Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура и условия эксперимента

    Расхождение (более чем на порядок) значений й, вычисленных по сопоставляемым формулам (формулы для теплообмена с наружной стенкой обнаруживают расхождение почти на два порядка), объясняется рядом причин. Одна из них состоит в широком разнообразии методов и условий экспериментов, на которых базируются формулы разных авторов (диапазоны температур и давлений, физические свойства ожижающего агента и твердых частиц, геометрические характеристики слоя и конструктивные особенности аппаратуры). Эти условия могут, кроме того, не совпадать с принятыми нами для сопоставления, приведенного на рис. Х-3, хотя формула каждого автора удовлетворительно описывает его экспериментальные данные. [c.418]


    При неполной информации о механизме процесса проводится функциональное изучение объекта в ходе эксперимента фиксируют входные и вы.ходные параметры объекта. На рис. 1 параметры хи. .., Хп — входные измеряемые и регулируемые параметры объекта, < 1,. .., — неконтролируемые, случайным образом изменяющиеся параметры, шум объема уи. .., — выходные параметры. В качестве случайных рассматриваются обычно параметры, которые по тем или иным причинам невозможно (или очень трудно) учесть. Например, падение активности катализатора, изменение состояния поверхности теплообменной аппаратуры, колебания наружной температуры воздуха и т. п. Комплекс параметров х, . .., хи называют также основным, он определяет условия эксперимента. Такое подразделение входных параметров на основные и случайные условно. Случайным будет любой параметр, не вошедший в основной комплекс входных параметров, даже если он хорошо изучен. В зависимости от постановки задачи и технических возможностей некоторые [c.5]

    Работа должна быть описана достаточно подробно, чтобы можно было воспроизвести аппаратуру, условия проведения экспериментов, метод и как логическое следствие оценить результаты и качество работы. [c.336]

    Успешное решение всех этих и ряда других задач, т. е. достижение высокой точности и воспроизводимости количественных результатов, возможно лишь при правильном выборе аппаратуры, условий проведения анализа и рационального метода количественной расшифровки хроматограмм, а также при исключении или сведении к минимуму возможных погрешностей на каждой отдельной стадии выполнения эксперимента. [c.211]

    Прямое доказательство существования дислокационного механизма АЭ -ее возникновение при пластическом деформировании монокристаллов. Оценки степени деформации, возникающей при единичном акте скольжения, дают е г 10 , в то время как деформация, приходящаяся на один регистрируемый импульс АЭ, составляет 10 ...10" . Таким образом, в событии, создающем один регистрируемый АЭ-импульс, участвует 10 . .. 10 дислокаций, энергия отдельного события - 10" 5...10 Дж. Подобные соотношения характерны для механизмов лавинного типа, когда в одновременное кооперированное движение вовлекается большое число дислокаций. Достоверность полученных оценок недостаточна из-за неполного описания условий экспериментов, характеристик примененной аппаратуры, методики регистрации и обработки результатов из -мерений. [c.168]

    На абсолютную и относительную точность (воспроизводимость) спектрофотометрических измерений влияет ряд разнообразных и часто трудно поддающихся учету факторов [23, 40]. Для количественного анализа и различных сравнительных исследований наиболее важной является воспроизводимость измерений и несущественны некоторые ошибки систематического характера, так что при разработке многих методик исследования, а также аппаратуры, исключению последних уделяется мало внимания. В связи с этим существует такое положение, что при высокой в большинстве случаев относительной точности современных спектрофотометрических измерений данные, полученные на различных приборах или в различных условиях эксперимента, часто значительно различаются. В большей части опубликованных исследований ультрафиолетовых спектров поглощения авторами не оценивается абсолютная точность измерений, а также не приводятся данные, относящиеся к аппаратуре и методике эксперимента, позволяющие провести хотя бы грубую оценку подобного рода. [c.383]


    Аппаратура и условия эксперимента [c.126]

    При использовании различной хроматографической аппаратуры, позволяющей в принципе получать воспроизводимые данные, с целью получения сопоставимых результатов следует рекомендовать проводить градуировку приборов по стандартному образцу, при этом может быть проведена корректировка условий эксперимента. С целью расширения возможностей применения имеющейся в разных лабораториях аппаратуры число стандартных образцов может быть увеличено. Выбор стандартных образцов для градуировки зависит от области применения метода. Стандартизация такого рода [50] позволяет сравнивать пирограммы различных образцов, полученные разными исследователями. [c.103]

    В каждом конкретном исследовании выбор образца определяется чаще всего при последовательном удовлетворении ряда требований. Однако основные условия, диктующие выбор образца, должны быть определены одновременно с выбором аппаратуры и условий эксперимента еще до проведения первых собственно кинетических измерений. При выборе образца, кроме того, необходимо учитывать и такие факторы, которые могут быть полностью оправданы только в ходе работы. [c.189]

    Теоретически рассмотрены различные факторы, связанные с аппаратурой и влияющие на эффективность разделения. Дан общий метод корректирования условий эксперимента, позволяющий достигнуть истинную разделительную способность колонки. [c.55]

    Различают случайные и систематические погрешности. Систематическая погрешность чаще всего остается постоянной на протяжении всей серии измерений. Важный источник систематических погрешностей — погрешности измерительной аппаратуры, например неточно установленное нулевое положение стрелки измерительного прибора, неточно градуированный прибор и Т.П. Систематические погрешности могут также возникнуть, если условия эксперимента отличаются от заданных теорией, а поправок на это несоответствие не сделано. [c.259]

    В испытаниях при нормальной температуре применяли ту же коррозионную аппаратуру, сохранив те же условия эксперимента, что и в испытаниях при повышенной температуре. [c.53]

    Теория подобия является учением о методах научного обобщения эксперимента. Она указывает, как надо ставить опыты и как обрабатывать их результаты, чтобы при проведении небольшого числа экспериментов иметь возможность обобщать опытные данные, получая единые уравнения для всех подобных явлений. Применение теории подобия часто позволяет вместо дорогостоящих трудоемких опытов на промышленной аппаратуре выполнять исследования на моделях значительно меньшего размера помимо этого, опыты можно проводить не с рабочими (часто вредными и опасными) веществами и не в жестких (высокие температуры, сильно агрессивные среды) условиях реального производственного процесса, а с другими (модельными) веществами в условиях, отличающихся от промышленных. [c.65]

    Реально (в эксперименте) может наблюдаться меньшее число экспоненциальных членов. Это прежде всего связано с методическими особенностями регистрации кинетической кривой. Так, при использовании наиболее распространенного спектрофотометрического метода необходимы заметные спектральные различия компонентов реакции. Кроме того, существенные ограничения накладывает временная разрешающая способность установки. Экспериментально определить характеристическое время можно лишь при условии, что оно превышает мертвое время используемой аппаратуры. Эти ограничения приводят к тому, что наблюдаемое на опыте число экспоненциальных членов позволяет оценить лишь минимальное число промежуточных соединений, принимающих участие в реакции. [c.204]

    Метод отпечатков пальцев обычно используют в тех случаях, когда отсутствует предварительная информация об исследуемом образце и состав продуктов пиролиза не изучен. В тех случаях, когда деструкция соединений протекает по закону случая и при этом не образуется заметного количества характеристических продуктов пиролиза, метод отпечатков пальцев является единственным методом идентификации, как, например, в случае полиэтилена. К условиям получения пирограмм, пригодных для идентификации методом отпечатков пальцев , предъявляются особые требования аппаратура, условия эксперимента и регистрации должны обеспечивать получение специфических пирограмм. В качестве иллюстрации к этому рассмотрим пирограммы полиэтилена (рис. 19), полученные при проведении пиролиза в пиролизере печного типа (А) и в пиролизере индукционного нагрева до точки Кюри (Б). Разделение продуктов пиролиза в обоих случаях проводили на колонке с реоплексом 400. Пирограмма, аналогичная приведенной на рис. 19,6, получена при использовании пиролизера филаментного типа. Если на пирограмме, изображенной на рис. 19, А, преобладает пик легких углеводородов, что является следствием глубокого распада и результатом протекающих в пиролизере печного типа вторичных реакций, то на пирограмме, приведенной на рис. 19, Б, отчетливо видны группы пиков (триплеты), состоящие из углеводородов парафинового, олефиново-го и диенового рядов с увеличивающимся числом углеродных атомов. Последняя пирограмма является специфической, характерной лишь для полиэтилена, что позволяет выделить его среди других типов полимеров и других органических соединений по общему рисунку пирограммы как отпечатку пальцев . [c.80]


    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    Ньюитт с сотр.- изучили окисление метана [2,3], этана [3,121 и пропана [13] при повышенных давлениях, причем окисление первых двух углеводородов — в статических и струевых условиях, а пропана — только в статических условиях. Эксперимент проводился в металлической аппаратуре. В продуктах реакции были найдены спирты, альдегиды, кислоты, СО и СОа. В случае пропана был найден также ацетон. [c.20]

    Гарн [34], Гарн и Кесслер [35], а также Боллин и Керр [8] исследовали влияние ряда факторов на правильность дифференциального термического и термогравиметрического методов анализа (величина проб, геометрия ячеек и характер атмосферы). Было показано, что особенности конструкции аппаратуры играют существенную роль при изучении превращений, протекающих при высоких температурах. Для большинства низкотемпературных процессов дегидратации эти факторы менее важны, однако и в области низких температур отмечен ряд аномальных эффектов. Например, нитрат кобальта на вермикулите проявляет при температурах ниже О °С кажущиеся низкотемпературные эндотермические эффекты, которые могут быть связаны с особенностями физической структуры образца, с размером пробы и с другими условиями эксперимента [23]. [c.216]

    При переходе от зарегистрированной прибором активности к абсолютной радиоактивности препарата нужно учитывать ряд эффектов, обусловленных параметрами выбранной измерительной аппаратуры, взаимным расположением препарата и счетчика и свойствами измеряемого радиоактивного изотопа. В результаты измерений вводятся поправки, учитывающие разрешающее время счетной установки, фон, эффективность счетчика к данному виду излучения, геометрические условия измерений, поглощение излучения в стенках счетчика и в слое воздуха между препаратом и счетчиком, поглощение излучения материалом препарата (само-ослабление), обратное отражение излучения от подложки, на которую нанесен препарат, а также разветвленность схем распада измеряемых радиоактивных изотопов. Значения поправочных коэффициентов получают либо расчетным путем, либо экспериментально. Многие эффекты оказываются взаимосвязанными, например, величина коэффициентов поглощения, самоослабления и обратного отражения зависит от геометрических условий эксперимента. Поэтому при выполнении точных работ следует отдать предпочтение методам калибровки измерительной аппаратуры. [c.61]

    Примечание. Как мы установили, описанньп выше метод позволяет получать удовлетворительные н сходящиеся результаты с большим числом белков, значительно различающихся по аминокислотному составу н по степени чистоты. Однако следует помнить, что для определения основных аминокислот нельзя установить постоянных правил. Часто оказывается необходимым изменять условия эксперимента вследствие специфических особенностей. Напрпмер, если содержание в белке одной или нескольких основных аминокислот невелико, то для анализа полезно применять больщие количества белка или комбинировать микро-метод Косселя со специфическими колориметрическими методами, вписанными ниже. Разработанное нами видоизменение метода Косселя позволяет двум работникам проводить 2 полных определения аргинина, гистидина и лизина в течение примерно 12 час. При этом единственной аппаратурой, которая встречается не [c.31]

    В отличие от этого, в работах Бонзе и Харта [28], Бредлера и Ланга [147], а также Харта [136] и Дислейта [137] картины муара были результатом специальной взаимной юстировки рассеивающих кристаллов. Из этой группы работ авторы [28], [136 и [137] применяли интерферометрическую аппаратуру. В работе 28] часть монокристального блока кремния, примыкающая к пластине-анализатору А, связывается с остальной частью узкой полоской (рис. 94) и снабжается устройством (рычагом, блоком и грузиком), которое позволяет поворачивать анализатор относительно остальной части прибора на небольшой угол поворот пластинки А на угол 0,01" приведет к образованию муара с интервалом полос в 4 мм. На рис. 95, а показана серия картин, полученных при. разных значениях момента пары сил, поворачивающих пластинку А. Из наблюдаемого максимального нак иона полос можно определить отношение А(11(1 8-10 . На рис. 95,6 показаны изображения дислокаций на картинах муара. Не вдаваясь в детали, заметим, что лишь при Ас О (верхние снимки) две избыточные полосы муара находятся над изображением дислокации, при Ad < 0 (нижние снимки) избыточные полосы — под изображением дислокации. Из условия эксперимента удалось установить, что вектор Бюргерса этих дислокаций составляет 1/2 [110] или 3,84 А, что соответствует кратчайшему межплоскост-ному рассеянию в 31 с решеткой алмаза. [c.290]

    Несмотря на большое практическое значение процессов переноса в условиях воздействия на полимерные диффузионные среды высоких давлений, эта проблема вплоть до настоящего времени оставалась наименее изученной. В работах [73, 117— 123] рассмотрены вопросы кинетики сорбции и проницаемости сжатых газов, фреонов, низкомолекулярных жидкостей через полимерные стекла и эластомеры. Однако характер полученных результатов, выбор объектов и условий исследования позволяют предполагать, что интересующий нас эффект, связанный с влиянием давления на диффузионные характеристики полимерных матриц, либо экспериментально не наблюдался, либо оказывался завуалированным пластификацией полимера газообразными веществами, либо не учитывался вообще, как, например, в [119, 120, 123]. Это вызвано двумя причинами. Во-первых, относительно небольшим интервалом изменения давления в условиях эксперимента, что связано с ограниченными возможностями использованной аппаратуры. Во-вторых, спецификой организации и проведения опытов, когда сжимающее низ комолекуляр-ный компонент давление неминуемо приводило к увеличению его растворимости в полимерном теле, а следовательно, и целой дополнительной гамме сопутствующих эффектов. Так, в [124] описано возрастание коэффициента газопроницаемости (Р) мембран из ПТФЭ при увеличении давления газа (рис. 2.35). Этот результат получен для необычного режима проведения диффузионного эксперимента (дифференциального), при котором разность давле.ний (Ар) по обе стороны мембраны поддерживается во всех опытах постоянной, а общее давление непрерывно возрастает. В работах [125—126] этот режим применительно к проблеме паропроницаемости назван сканированием по изотерме сорбции . Для обычного — интегрального режима, при котором перепад давления Ар меняется с изменением внешнего давления рь Р с ростом р1 уменьшается. Однако систематических измерений влияния давления, воздействующего избирательно на диффузионную среду, в полимерных системах практически не проводилось. [c.60]

    Отмеченные ограничения делают этот метод недостаточно гибким в смысле вариации условий эксперимента, а сложность аппаратуры для регистрации движения границ [70] (наблюдение за смещением границ осуществляется в U-образной ячейке Тизелиуса [71] (рис. 3.1) с помощью сканирующей шлирен-системы, регистрирующей градиент коэффициентов преломления в границах) делает его также малодоступным. [c.51]

    Систематическая погрешность может быть либо положительной, либо отрицательной это означает, что экспериментальные результаты оказываются либо завышенными, либо заниженными против правильных значений. Однако знак систематической погрешности не меняется и при повторных измерениях. Повторные измерения с тем же прибором не позволяют обнаружить и устранить систематическую погрешность. Систематические погрешности, как правило, не поддаются математическому анализу, и нельзя указать общих приемов их выявления и устранения. Гарантией отсутствия систематических погрешностей является безупречное вьшолнение правил эксплуатации и град)щровки измерительной аппаратуры, грамотное обеспечение условий эксперимента, личный опыт экспериментатора. [c.259]

    Для выбора юмноратурного режима каталитической очистки в таких же условиях и аппаратуре, как и в описанных выше экспериментах по каталитическому риформингу лигроинов прямой гонки, проведена серия опытов по очистке заводско1 о пресс-дистиллята, отобранного с установки, крекирующей соляровую фракцию в жидкой фазе. Условия опытов были следующие катализатор — актизтрованная глина № 1, время работы катализатора без [c.101]

    Программа экспериментальных. исследований, закодированная на машинном носителе информации, обычно содержит циклограмму режимов работы объекта перечень параметров, подлежащих регистрации на каждом этапе эксперимента продолжительность периодов регистрации, моменты включения и отключения отдельных контрольно-измерительных приборов перечень типов аппаратуры, которая используется для измерения и регистрации различных параметров с указанием условий перехода в процессе проведения эксперимента на иной вид измерительного прибора или другой диапазон измерений программы для математической экспресс-обработки регистрируемых параметров (алгоритмы и аналитические соотношения, по которым выполняются расчеты, и объем исходной информации при отдельных расчетах) логику перехода к следующим видам эксперимента в зависимости от результатов экспресс-обработки данных, полученных в предыдущих экспериментах указания о способах отображения и документального представления результатов регистрации и обработки экспериментальной информации перечень параметров, подлежащих контролю по предельно допустимым значениям в блоке противоаварийной защиты вид аварийной сигнализации и последовательность операций управления испытательными стендами, контрольно-измерительными и регистрирующими приборами при аварийной или предава-рийной ситуации. [c.119]

    Разработка экспериментальных методов получения данных. Она требуется в тех случаях, когда необходимо определять свойства в условиях, отличных от ранее используемых, или при ограничениях типа по коррозионной стойкости и токсичности. Проведение экспериментальных исследований связано обычно с большими затратами труда и времени. Поэтому естественно стремление экспериментаторов иметь инструментальную технику, обладающую высокой точностью, быстродействием и широкой областью применения по температуре, давлению, составу. Однако разработка такой аппаратуры — весьма сложная и практически нереальная задача. Поэтому повышение точности и быстродействия эксперимента возможно унификацией математического обеспечения и автоматизацией последнего на базе АСНИ. [c.182]


Смотреть страницы где упоминается термин Аппаратура и условия эксперимента: [c.17]    [c.67]    [c.243]    [c.6]    [c.174]    [c.5]    [c.113]    [c.120]    [c.15]    [c.32]    [c.46]    [c.148]    [c.243]    [c.134]    [c.121]    [c.157]   
Смотреть главы в:

Органическая электрохимия Т.1 -> Аппаратура и условия эксперимента

Газовая хроматография хелатов металлов -> Аппаратура и условия эксперимента




ПОИСК





Смотрите так же термины и статьи:

Аппаратура и эксперимент

Условия эксперимента



© 2025 chem21.info Реклама на сайте