Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные основы молекулярно-кинетической теории

    Основы современных представлений о структуре материи были заложены в те далекие времена, когда люди только еще пытались вникнуть в сущность окружающих их вещей. Такие неотделимые от материи понятия, как движение и прерывность (дискретность), были уже предметом дискуссий древнегреческих натурфилософов. Понятие атом (от греческого атоцое — неделимый) восходит к Демокриту (V в. до н. э.). Изучающим химию полезно проследить историю развития атомистических представлений, а также основы кинетической теории. Ниже весьма кратко изложены наиболее важные экспериментальные доказательства, которые послужили краеугольным камнем атомно-молекулярной теории строения материи и так назы-. ваемой теоретической химии (именно так Нернст назвал одну из своих классических работ, снабдив ее подзаголовком Теоретическая химия с точки зрения правила Авогадро и термодинамики ). [c.11]


    Уравнение Эйнштейна — Смолуховского неодно кратно проверялось и экспериментально была дока зана его правильность. Поскольку в основе теории броуновского движения, принятой Эйнштейном и Смолуховским при выводе уравнения, положены молекулярно-кинетические представления, следовательно, установление правильности предложенного ими уравнения является одним из доказательств правильности молекулярно-кинетических представлений в целом, т. е. подтверждением реального существования молекул. [c.191]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 17 [c.17]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 13 [c.13]

    Закон действующих масс для скорости (9.5) и уравнение Аррениуса (9.19) — эмпирические зависимости. Это математические выражения, подобранные для описания экспериментальных результатов исследований различных химических процессов. Однако для простых реакций закон действующих масс для скоростей и уравнение Аррениуса могут быть выведены на основе молекулярно-кинетической теории и термодинамики. Такой вывод позволяет рассчитать и выявить физический смысл формально введенных величин — предэкспоненты Ас и энергии активации Еа в уравнении (9.19). [c.406]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 27 [c.27]

    В высокоэластическом состоянии подвижность полимерных цепей велика, и это определяет общие закономерности и природу трения высокоэластических полимеров. Здесь ярко выражена зависимость силы трения от скорости скольжения, температуры и давления. Теоретической основой и интерпретацией этих закономерностей являются молекулярно-кинетические представления о подвижности молекул полимера на границе контакта с твердым телом. Разработанная на основе этих представлений общая теория трения высокоэластических полимеров позволила не только объяснить ряд важных экспериментальных зависимостей, но и предсказать новые. [c.90]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ- 19 [c.19]

    Если частицы дисперсной фазы достаточно малы, то обнаруживается их участие в тепловом движении. Это обусловливает в дисперсных системах такие явления, свойственные молекулярным растворам, как диффузия и осмос. Область коллоидной химии, изучающая эти явления, стала уже классической. Она получила значительное теоретическое развитие в работах Эйнштейна и Смолуховского и послужила основой для формирования ряда разделов современной физики и физической химии теории флуктуаций, микроскопической теории диффузии. Вместе с тем экспериментальные исследования молекулярно-кинетических свойств дисперсных систем, проведенные Перреном, Сведбергом и другими учеными, подтвердили правильность представлений материалистического естествознания, лежащих в основе молекулярно-кинетической теории тем самым эти исследования содействовали выходу из философского кризиса в физике, возникшего на рубеже XIX и XX вв. Это обусловливает общенаучное, мировоззренческое значение теории молекулярно-кинетических свойств дисперсных систем. [c.140]


    Заложив в основу теории тепломассообмена модель сплошной среды, мы тем самым пользуемся термодинамическим методом изучения явлений переноса, т.е. отвлекаемся от внутреннего физического механизма этих явлений и никак не учитываем свойства конкретной среды. Как показывает опыт, интенсивность процессов переноса в различных средах разная. Поэтому наряду с общими законами физики (законом сохранения и превращения энергии, законом сохранения массы, законом сохранения импульса) при составлении математического описания процессов тепломассообмена должны привлекаться эмпирические законы (законы Фурье, Фика, Ньютона), в которых свойства среды учитываются соответствующими коэффициентами переноса. Эти коэффициенты переноса, а также коэффициенты, характеризующие излучение реальной среды, получают либо экспериментально, либо с помощью молекулярно-кинетической или электромагнитной теории, либо методами статистической и квантовой физики. [c.16]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 23 [c.23]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 25 [c.25]

    ЭКСПЕРИМЕНТАЛЬНЫЕ ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ 31 [c.31]

    Открытие в 1828 г. броуновского движения и обоснование его тепловой природы явилось первым экспериментальным подтверждением представлений молекулярно-кинетической теории. Изучение движения коллоидных частиц в поле зрения ультрамикроскопа, проведенное Ж- Перре-IIOM, Г. Сведбергом и др., работы А. Эйнштейна и М. Смолуховского позволили создать теории теплового движения частиц, дис к )узии и флуктуации, справедливые и для молекул. На основе этих работ оказалось возможным рассчитать нз экспериментальных данных важнейшую физическую константу—постоянную Авогадро, причем ее расчетное значение достаточно хорошо совпало с теоретическим. [c.88]

    Теоретические расчеты, проведенные на основе молекулярно-кинетической теории, показывают, что для роста грани кристалла необходимо 25—30%-ное пересыщение. Результаты экспериментальных исследований свидетельствуют о том, что для роста [c.134]

    Теория коллоидных растворов со всеми ее выводами и уравнениями, в основе которых лежит молекулярно-кинетическая теория, получила полное экспериментальное подтверждение не только в интегральной форме. При исследовании коллоидных растворов можно было непосредственно видеть отдельную частичку, подсчитать количество частиц, определить скорость их движения, величину и частоту флуктуаций. Таким образом, была доказана достоверность основных предпосылок и выводов молекулярно-кинетической теории на отдельных частицах. Примечательно, что М. Смолуховский, оценивая экспериментальные исследования Ж. Перрена, Т. Сведберга и др., подтвердившие его теоретические формулы и формулы А. Эйнштейна, писал, что они представляют собою действительно классический опытный материал для доказательства кинетической атомистики Результаты этих экспериментов вынудили последователей школы В. Оствальда признать реальность существования атомов и молекул. [c.401]

    Молекулярно-кинетическая теория газов была создана на основании экспериментальных данных о различных свойствах газов. Однако мы умышленно изложили здесь эту теорию до того, как будут рассмотрены реальные свойства газов, поскольку теория создает основу, на которой можно обсуждать экспериментальные факты. В науке мало примеров таких теорий, которые столь же успешно, как кинетическая теория газов, позволяют объяснять множество различных фактов. Тем не менее всегда следует рассматривать теорию как средство для изучения реальных явлений. Правда, время от времени всякая теория нуждается в уточнении, а иногда ее вовсе отбрасывают и заменяют другой теорией. [c.159]

    Численное значение D зависит от молекулярно-кинетических характеристик диффундирующего вещества и среды, в которой происходит диффузия. Напомним, что такими характеристиками являются средняя скорость U теплового движения молекул, средняя длина их свободного пробега Л и эффективное сечение молекул в процессе их соударений. В молекулярно-кинетической теории газов выводится следующее соотношение для коэффициентов диффузии в газах D = UA/3. Для диффузии в газах при высоких давлениях, когда молекулы уже нельзя полагать точками, и тем более для диффузии в капельных жидкостях значения коэффициентов диффузии приходится определять на основе экспериментальных измерений. [c.346]

    Теоретические исследования в этом направлении, с одной стороны, исходят из молекулярно-кинетической теории и приводят к уравнениям, по которым, имея ограниченное число исходных данных, можно рассчитать с той, или иной точностью вязкость газов и жидкостей. С другой стороны, используется принцип подобия и теория соответственных состояний, устанавливающие графические или аналитические обобщающие зависимости, которые позволяют на основе экспериментальных данных для одного или немногих веществ вычислить вязкость для многих других веществ в широких пределах температур и давлений. [c.127]


    Экспериментальные исследования и теоретический анализ, проведенные на кафедре физики МИХМа, показали, что для ускорения многих процессов (в том числе, растворения, эмульгирования, диффузии, сушки) в акустически сложных условиях, например, на границе раздела фаз, при сложном составе обрабатываемого материала наиболее эффективно не узкополосное, а широкополосное воздействие. Показано также, что спектральное распределение гидроакустического излучения зависит от характера и молекулярно-кинетического механизма того или иного процесса. В связи с этим основная задача интенсификации физико-химических процессов с помощью акустического воздействия сводится к выбору или созданию излучателя со спектральной характеристикой, соответствующей параметрам процесса. Решение этой задачи является новым направлением прикладной акустики. Основу физической теории широкополосных гидроакустических излучателей составляют преобразования Фурье и принцип суперпозиции, на основании которых можно условно подразделить все излучатели на периодические и апериодические. [c.161]

    Биоэлектрокатализ открывает новые возможности в изучении действия биокатализаторов. Электрохимические методы позволяют выяснить тонкие детали молекулярных механизмов действия ферментов. Экспериментальное исследование зависимостей тока от потенциала, концентрации фермента, концентрации ионов водорода и субстратов с последующим анализом на основе теории электрохимической кинетики помогает выявить механизм превращений субстрата в активном центре фермента. Например, исследование кинетики действия медьсодержащей оксидазы, иммобилизованной на электроде, показывает, что наиболее вероятный механизм действия активного центра включает стадию присоединения кислорода, быстрый равновесный перенос одного электрона, двух протонов и синхронный замедленный перенос двух электронов на лимитирующей стадии процесса. Кинетическое исследование с привлечением структурных данных дает представление о молекулярном механизме действия оксидазы. [c.69]

    Уравнения (1.76)—(1.79) могут служить основой для описания многих технологических процессов, протекающих в дисперсных средах, где имеют место явления тепло- и массообмена совместно с химическими превращениями. Эти уравнения, как и вся система уравнений (1.66), являются результатом фенсменологического подхода к описанию движения взаимопроникаюпщх континуумов. Коэффициенты переноса, входящие в эти уравнения, определяются либо экспериментально, либо, если это возможно, рассчитываются теоретически или полуэмпирически на основе молекулярно-кинетической теории газов и жидкостей. Таким образом, целесообразно комбинировать феноменологический и статистический подходы для описания процессов, протекающих в многофазных, многокомпонентных средах. [c.67]

    Авторы сочли нецелесообразным включать в справочное пособие таблицы с экспериментальными значениями коэффициентов молекулярной диффузии для газов по той причине, что имеющиеся в литературе уравнения для расчета Ддв в газах, полз ченные на основе молекулярно-кинетической теории с достаточной точностью для инженерных расчетов, подтверждены экспериментально. Заинтересованному читателю можно рекомендовать [6-8, 29, 30, 37, 49, 101, 195, 278], в которых он найдет необходимые сведения для системы газ— газ. Эксперимента1щыые методы определения коэффициентов молекулярной диффузии в системе газ— газ наиболее 1ю шо представлены в [195], а значения коэффициентов диффузии — в [7]. Составители понимают, что данное справочное пособие, являющееся, по сути дела, одной из первых попыток обобщения накопленного за многие годы литературного материала по молекулярной диффузии, не лишено недостатков, и будут благодарны читателям за присланные критические замечания и советы. [c.786]

    Кратко рассмотренные здесь основы молекулярно-кинетической теории, как уже было указано, вполне распространяются и иа коллоидные растворы. Больше того, молекулярно-кинетическая теория впервые получила экспериментальное подтверждение именно на коллоидных растворах, при исследовании в них так называемого броуновского движения частиц, о котором мы будем говорить ь длТ ьнейшем. [c.36]

    В качественно описанной наиболее простой модели структуры турбулентного потока, имеющего контакт с твердой поверхностью, предполагается наличие двух основных зон потока турбулентного ядра, слабо ощущающего демпфирующее влияние твердой стенки, и тонкого пристенного слоя, где, наоборот, считается, что турбулентные пульсации из ядра потока в такой слой проникать не могут вследствие непосредственной близости стенки. Но даже при таком, наиболее простом модельном представлении о турбулентном потоке вопрос о влиянии стенки на изменение масштаба (аналог длины свободного пробега молекул в молекулярно-кинетической теории газов) и интенсивности турбулентности (нульсационная скорость в турбулентном потоке) решается не теоретически, а только на основе экспериментально измеряемых характеристик турбулентности. Определение толщины пристенного слоя также не может быть проведено без экспериментальных (как правило, инструментально весьма сложных) измерений. [c.57]

    Согласно этому уравнению, скорость реакции зависит от температуры Т, энергии активации и фактора А (константа Аррениуса, фактор частоты, константа действия). Совершенно аналогичное выражение можно получить на основе кинетической теории газов, рассматривая химическую реакцию как результат столкновений реагируюш,их молекул. Успешными бывают лишь столкновения молекул, имеюш,их некоторую минимальную энергию — энергию активации. Константу Аррениуса при этом отождествляют со статистически найденным числом столкновений реа-гируюш их молекул. Однако вычисление таким способом дает слишком большие скорости, поэтому приходится допустить, что столкновение ведет к химической реакции лишь в том случае, если оно происходит в стерически чувствительной области молекулы . Константу Аррениуса заменяют произведением числа столкновений Z и фактора вероятности (стерический фактор) Р. Последний можно вычислить лишь на основе экспериментальных данных. Таким путем устанавливается определенная связь между макроскопическими величинами (температура, энергия активации и скорость реакции) и молекулярными процессами. Однако польза этих представлений для решения проблем механизмов реакций все же ограничена, поскольку здесь рассматриваются не отдельные молекулы, а статистика их множества. Механизм же реакции является результатом взаимодействия отдельных, конкретных молекул. Эта точка зрения развита в работах Пельцера и Вигнера и в особенности Эйринга. [c.141]

    В настояшее время можно представить следующую последовательность пропессов при кристаллизации вслед за первичным актом образования зародыша кристаллизации (разд. 5.1) протекает стадия образования молекулярного зародыша (рис. 5.40,Б), регулирующая обратимое присоединение исходной части молекулы. Если малекула достаточно длинная, то она включается в кристалл, если же нет — она выталкивается из него. При малых степенях переохлаждения зародыш образован сложенной на себя макромолекулой, однако при больших переохлаждениях он может быть образован лишь одной траверсой (рис. 0.49). Классическая теория образования зародышей (разд. 5.3.4) приводит к приближенному описанию процесса. Последующий рост молекулярного зародыша может сопровождаться флуктуациями длин складок, так что конечная средняя длина складки будет больше, чем длина складки исходного зародыша. В области малых и умеренных степеней переохлаждения это увеличение длины складки не очень сильное (10 - 40%). Классические теории одномерного роста кристаллов, учитывающие появление флуктуаций, дают хорошее соответствие с экспериментальными результатами при умеренных и малых степенях переохлаждения (разд. 6Л.4.3). Причины появления шероховатой поверхности понятны, однако сравнение в настоящее время может быть проведено лишь на качественном уровне. В разд. 6.1.4.5 показано, что скорости роста кристаллов легко объяснить на основе модели молекулярного зародышеобразования с последующим ростом флуктуаций длины складок, регулируемым кинетическими факторами. [c.209]


Смотреть страницы где упоминается термин Экспериментальные основы молекулярно-кинетической теории: [c.99]    [c.17]    [c.15]    [c.192]    [c.111]    [c.236]    [c.95]    [c.10]   
Смотреть главы в:

Физическая химия Книга 1 -> Экспериментальные основы молекулярно-кинетической теории

Физическая химия Книга 2 -> Экспериментальные основы молекулярно-кинетической теории




ПОИСК





Смотрите так же термины и статьи:

Молекулярно-кинетическая теори

Основы молекулярно-кинетической теории



© 2024 chem21.info Реклама на сайте