Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протоны метильных групп

    На спектре ПМР л-ксилола (рис. 49) укажите резонансные сигналы протонов метильных групп и бензольного кольца. Сопоставьте число эквивалентных протонов с интегральной 220 260 т W Я,// г кривой. Рис. 48. УФ-спектры [c.127]

    Протоны, входящие в состав одной молекулы, но отличающиеся природой соседних атомов или групп, также отличаются степенью экранирования, а следовательно, и значением напряженности (или частоты, если развертка проводится по частоте), при которой произойдет резонанс. Например, ядра атомов водорода гидроксильных групп метилового спирта менее экранированы, чем ядра протонов метильной группы, а в молекуле этилового спирта имеется уже три группы неэквивалентных протонов. Поэтому в спектре ПМР метилового спирта должно быть два, а этилового спирта — три сигнала (рис. 94). [c.285]


    Сверхтонкое расщепление сигналов в спектре этанола объясняется спин-спиновым взаимодействием между протонами метильной и метиленовой групп. Наблюдаемое число компонент в мультиплетах и их интенсивности находит простое теоретическое обоснование. На рис. 33 приведены возможные спиновые ориентации протонов этильной группы, т. е, /2, — 4, —% для протонов метильной группы и 1, О, —1 для протонов метиленовой группы. Только одно сочетание отдельных спинов ( /а, V2, /г) будет давать общий спин [c.83]

    При взаимодействии атомных групп, содержащих несколько ядер, спектр ЯМР, естественно, усложняется. Спектр ПМР этильного радикала, например в подкисленном спиртовом растворе (и аналогично в молекулах H3 H2R, где R — невзаимодействующий атом), при достаточном разрешении имеет вид, представленный на рис. 1.8. В такой системе, относящейся к типу А3Х2, спиновые состояния группы Xq описываются, как было показано для двухспиновой системы в табл. 1.4. Эти состояния протонов группы СНг влияют на резонансный сигнал протонов метильной группы СНз, который и представляет поэтому триплет в соответствии с числом возможных значений суммарного спина системы Х2. Соотношение интенсивностей компонент в триплете 1 2 1, что соответствует соотношению вероятностей (кратности вырождения), влияющих состояний группы СНг с данным суммарным спином (см. табл. 1.4). [c.25]

    В спектре протонного магнитного резонанса этилфенилкетона сигнал протонов метильной группы проявляется в виде трех пиков, а сигнал протонов метиленовой группы — в виде четырех пиков. Третья группа сигналов обусловлена протонами фенильного ядра (рис. 72). [c.198]

    Из-за различного химического окружения линии поглощения этих молекул будут наблюдаться при различных частотах. Вследствие быстрого свободного вращения вокруг простой связи протоны метильной группы всегда оказываются эквивалентными, поэтому такие соединения, как ацетон, диметило-вый эфир и неопентан, также дают спектр ЯМР, состоящий из одной линии (рис. 23). [c.62]

    Одним из первых органических соединений, в спектре ЯМР которого обнаружено несколько отдельных пиков, был этанол (Дж. Арнольд с сотр., 1951 г.). В молекуле этанола есть три типа протонов, находящихся в различном химическом окружении три протона метильной группы, два протона метиле-иовой и один протон гидроксильной группы. Вследствие этого при плавном изменении напряженности приложенного магнитного поля Яо (и поддержании постоянной частоты генератора) протоны, находящиеся в разных местах молекулы, вводятся в резонанс один за другим, и их сигналы образуют спектр в соответствии со значениями констант экранирования этих протонов. Для этанола спектр ЯМР должен состоять из трех сигналов. Поскольку интенсивности сигналов, т. е. площади под резонансными пиками, пропорциональны числу магнитных ядер, спектр ЯМР этанола должен выглядеть, как показано на рис. 24. [c.62]


    Таким образом, резонанс протонов метильной группы, находящейся под влиянием двух протонов метиленовой группы, будет наблюдаться при трех значениях частоты (или магнитного поля), причем компоненты триплета будут иметь интенсивности, относящиеся, как 1 2 1. В то же время резонанс протонов метиленовой группы, находящейся под влиянием трех протонов метильной группы, будет наблюдаться при четырех значениях частоты, и интенсивности компонент квартета будут относиться, как 1 3 3 1. Взаимодействие в пределах каждой группы эквивалентных протонов (например, между протонами метиленовой или между протонами метильной группы) не должно наблюдаться. [c.85]

    Подавление спин-спинового взаимодействия. При использовании этой методики насыщают ядра одной из групп А или X) с помощью поля Яа- При этом в спектре ЯМР пропадает тонкая структура сигнала другой группы ядер. Например, если наблюдать резонанс протонов метильной группы и одновременно полем Яа насыщать ядра фтора, то в спектре ПМР вместо дублета СНз-группы будет синглет и, наоборот, если насыщать полем Яа ядра атомов водорода метильной группы, в спектре ЯМР вместо квартета для ядер фтора проявится синглет. Применяя эту методику к нитроэтану, можно видеть из спектра ПМР, что спин-спиновое взаимодействие между протонами метильной и метиленовой групп подавляется, т. е. каждый из сигналов поочередно будет появляться в виде синг-лета вместо квартета (СНа-группа) и триплета (СНз-группа), [c.95]

    Сигнал протонов метильной группы наблюдается в виде триплета с центром при 1,75 м. д., который не мог возникнуть вследствие спин-спинового взаимодействия с протонами метиленовой группы (через четыре простые связи спин-спиновое [c.153]

Рис. 77. Сигнал протонов метильной группы этилбензола, измеренный на спектрометре 2КК-60. Рис. 77. <a href="/info/1680751">Сигнал протонов метильной</a> группы этилбензола, измеренный на спектрометре 2КК-60.
Рис. 41. Спин-спиновое взаимодействие, Расщепление энергетических уровней протонов метильной группы в этаноле в результате спин-спинового взаимодействия с протонами метиленовой группы СН2 Рис. 41. <a href="/info/92508">Спин-спиновое взаимодействие</a>, <a href="/info/463802">Расщепление энергетических</a> уровней протонов метильной группы в этаноле в результате <a href="/info/92508">спин-спинового взаимодействия</a> с <a href="/info/131745">протонами метиленовой</a> группы СН2
    Если заместить протоны Н на метнльные группы, то полученное соединение дает спектр ЭПР. состоящий из четырех основных групп линий. каждая из которых в свою очередь включает пять линий, обусловленных только расщеплением на ядрах азота. Сверхтонкое расщепление на протонах N — И" или протонах метильных групп либо очень мало, либо вообще отсутствует. [c.23]

    Остается ответить на вопрос почему сигналы протонов N —Н в ( HзNH2)йNi- сдвигаются при комплексообразовании в сильном поле Сигналы протонов метильной группы сдвигаются в слабое поле из-за прямой делокализации плотности неспаренного электрона. Большая часть плотности неспаренного электрона, делокализованной на лигапде, находится па азоте, а меньшая часть делокализована непосредственно на протоне N — Н. Поэтому значительная спин-поляризация связи N — [c.180]

    На рисунке приведен спектр изопропилбензола дублет с химическим сдвигом 6—1,15 м. д. соответствует протонам метильных групп. Сепстет с центром 3,8 м. д.— протоном метиновой группировки, а с близким по величине химических сдвигов протонам ароматического ядра — синглет 7,1 м, д. Изомерные изопропилбензолу углеводороды имели бы другой спектр. [c.299]

    Образование ковалентной связи между протоном и одним из атомов углерода, входящего в ароматическую систему, при возникновении а-комплекса подтверждено спектром ПМР, полученным при смешивании 9,10-диметилантрацена с эквпмоль-ными количествами трифторуксусной кислоты и трифторида бора. Между сигналами ароматических протонов и протонов алкильных групп был обнаружен отсутствующий в непротони-рованном углеводороде пик в виде хорошо разрешенного квадруплета, в то время как пик протонов метильной группы расщепился на дублет. Этот факт свидетельствует о присоединении к атому С-9 протона, который вступает в спин-спиновое взаимодействие с протонами метильной группы, связанной с этим же атомом углерода, [c.320]

    Для уксусного альдегида при апало1ичном рассмотрении си1 1ал протонов метильной группы (протоны Н, Н , и Н " химически гЖ-вивалентны) должен расщепиться в дублет (рис. 96), так как ядро атома Н может занимать только уровень аир. Для протона Н альдегидной группы возможны следуюш,ие варианты  [c.289]

    В 3-хлортиофене протоны в положениях 4 и 5 образуют спиновую систему АВ, в хлористом виниле — спиновую систему АВХ, в изопропиловом эфире AgB, в метилацетнлене АцХ. Протоны этильного радикала этилацетата образуют спиновую систему АзБ,, протоны метильной группы аце- [c.298]


    В спектре имеется синглет протонов ароматического ядра (7,1 м. д.). синглет протонов метильной группы и два триплета (спиновая система А2Х.2), Это позволяет предложить для исследуемого вещества формулу фенилэти-лового эфира уксуной кислоты СвНйСНаСНаОСОСН ,. [c.299]

    В конформационно подвижных системах протоны магнитно эквивалентны в том случае, если они взаимозаменя-ются при вращении по связи С—X (к примеру, протоны метильной группы) или являются магнитно эквивалентными хотя бы в одном из конформеров молекулы. [c.24]

    Учитывая брутто-формулу исследуемого соединения, можно заключить, что в ней отсутствуют ненасыщенные связи и молекула не может иметь циклическое строение. По-видимому, это тиоэфир. Происхождение триплета с центром при 1,27 м. д. и квартета при 2,53 м. д. с равными КССВ можно объяснить присутствием в молекуле исследуемого соединения этильной группы. Синглет при 2,10 м. д. может быть сигналом протонов метильной группы, связанной с атомом серы. Таким образом, это метилэтилсульфид (СНд—СНз—5—СНз), строение которого трудно установить только по спектру ПМР, не зная брутто-формулы. [c.155]

    В полном согласии с выбранной структурой находится и наблюдаемая мультиплетность сигналов алифатических протонов в спектре ПМР. Действительно, эти протоны составляют спиновую систему АдМХ. Отсюда протонам метильной группы (Ад) соответствуют четыре линии (дублет дублетов), определяющие две константы спин-спинового взаимодействия Jam. = = 6 Гц, Jax = 3 Гц. Сигнал при б 5,4 м. д. выглядит как симметричный квинтет с расстоянием между компонентами мультиплета, равным 6 Гц. Этот сигнал отвечает олефиново- [c.230]

    Локальные электронные токи возникают в атоме под действием внешнего магнитного поля в п.поскости, перпендикулярной к этому полю. Они всегда уменьшают внешнее магнитное поле в месте нахождения ядра, т. е. приводят к отрицательному или диамагнитному, экранированию. В свою очередь степень электронного экранирования должна находиться в прямой зависимости от электронной плотности вокруг протона чем электронная плотность выше, тем сильнее экранирование, т. е. в тем более сильном поле будет наблюдаться резонанс данного протона (или другого магнитного ядра). Этот вывод согласуется, например, с тем, что наблюдается соответствие между химическими сдвигами протонов метильных групп и электроотрицательностями связанных с ними атомов (см. рис. 57). [c.68]

    У метилацетилена СНз—С=СН сигналы протонов метильной группы случайно совпадают с сигналом ацетиленильного протона и поэтому в спектре ПМР этого соединения присутствует только один узкий синглет. [c.82]

    Метод упрощения спектров ЯМР с помощью двойного резонанса был предложен Ф. Блохом в 1954 году. В эксперименте с двойным резонансом исследуемый образец подвергается, кроме сильного постоянного поля действию двух радиочастотных полей Нг и Н2- Допустим, молекула исследуемого соединения содержит две группы неэквивалентных ядер А И X (например, метильная и метиленовая группы в нитроэтане или протоны метильной группы и ядро атома фтора в СНз—Р). Если в момент резонанса ядер группы А (совместное действие полей Но и Ну) воздействовать дополнительным радиочастотным полем Яа на ядра только группы X, то первые (группа А) также ощущают это воздействие, проявляющееся в спектре ЯМР в изменении вида сигнала ядер группы А по сравнению с сигналом этой группы прн отсутствии поля Яа-Обычно различают гегпероядерный (группы А и X содержат различные ядра, например молекула СНд—Р) и гомоядерный двойной резонанс (ядра групп Л и X одного изотопа, например протоны метильной и метиленовой групп СНз—СНа—МОа). [c.95]

    Наличие обменного процесса может приводить к исчезновению тонкой структуры, обусловленной спин-спиновым взаимодействием, т. е. к исчезновению спин-спинового расщепления полос в спектре. Например, на рис. 54 приведен спектр ПМР чистого сухого этанола и спектр его с небольшой добавкой соляной кислоты. В спектре чистого сухого спирта сигнал протона ОН-группы представляет собой триплет, обусловленный спин-спиновым взаимодействием с протонами СН -группы. Однако при добавлении небольшого кол1 -чества соляной кислоты триплетный сигнал от ОН-группы превращается в одиночный узкий синглет. В то же время пропадает расщепление, обусловленное спин-спиновым взаимодействием этого протона с протонами СНз-группы, сигнал которой превращается в квартет, так как сохраняется расщепление за счет взаимодействия с протонами метильной группы. Добавление кислоты вызывает быстрый обмен протонами между гидроксильными группами соседних молекул. [c.122]

    В соединениях типа СНз — влияние заместителя X на величину химического сдвига протонов метильной группы проявляется наиболее сильно. Результирующее дезэкранирование является результатом индукционного действия заместителя, магнитной анизотропии связи С—X и других связей заместителя. В том случае, когда X — атом фтора, гидроксильная или аминогруппа, химический сдвиг протонов СНз-группы находится в линейной зависимости от электроотрицательности атома X (рис. 57). Если в заместителе X имеются магнитно-анизотропные группировки, то их действие иногда может оказаться противоположным тому, который следует из индукционного эффекта. Например, сигналы ацетонитрила (1,966) и диметилсульфида (2,066) почти совпадают, хотя электроотрицательности N- и S-rpynn резко различаются. Это обусловлено магнитной анизотропией тройной связи =N. Она такова, что протоны метильной группы по- [c.128]

    Теперь можно понять причину различия в спектрах ПМР уксусного альдегида и уксусной кислоты (с. 75). Спектр первого из этих соединений содержит расщепленные сигналы, тогда как второе соединение дает два узких синглета. В молекуле уксусного альдегида протоны метильной группы и альдегидный протон разделены тремя простыми связями, поэтому спин-спиновое взаимодействие между ними возможно и действительно наблюдается (КССВ равна 2,84 Гц). В молекуле уксусной кислоты протоны метильной группы и протон карбоксильной группы разделены четырьмя простыми связями — спин-спиновое взаимодействие не происходит Константы спин-спинового взаимодействия протонов редко превышают 20 Гц. Важно знать интервал наблюдаемых значений КССВ и их типичные значения (см. табл. И приложения). Константа J может иметь знак + или — , что следует из анализа многопротонных систем. В простейших случаях знак константы не отражается на спектре. [c.131]

    Каждая из предлагаемых структур должна содержать в спектре ПМР квартет метиленовой и триплет метильной групп, поэтому для решения этой задачи следует рассмотреть сигналы протонов метиновых групп и фенильного ядра. В спектре ПМР 1,1-дифторбутанона-2 сигнал метинового протона должен наблюдаться в виде триплета (вследствие спин-спинового взаимодействия с двумя ядрами Р) в области 5—6 м. д., которого нет в спектре. Синглет в области 6 м.д. не может быть сигналом протонов фенильного ядра, так как площадь этого сигнала должна быть больше, чем площадь сигнала трех протонов метильной группы с центром около 1,3 м. д., чего нет в приведенном спектре. Более сложно сделать выбор между оставшимися двумя структурами, так как спектры ПМР должны быть внешне очень похожими, а именно триплет и квартет протонов этильной группы и синглет метинового протона. Однако из табл. 6 приложения следует, что квартет протонов метиленовой группы, связанной с карбонильной группой, должен находиться в области 2—2,5 м. д., в то время как протоны О—СНг-группы могут быть в области 4—4,5 м. д. Таким образом, приведенный в задаче спектр ПМР отвечает структуре СНз—СНа—О—СО—СНС1з. [c.151]

    Триплет с центром при 1,13 м. д. принадлежит протонам метильной группы. Квартет в более слабом поле при 2,23 м. д. отвечает протонам метиленовой группы. Тонкая структура спектра ПМР подтверждает это отнесение,так как присутствие триплета объясняется спин-спиновым взаимодействием с двумя протонами метиленовой группы. Последняя, в свою очередь, проявляется в спектре ПМР в виде квартета вследствие спин-спинового взаимодействия с тремя протонами метильной группы. Широкий горб в области 6,1—6,7 м. д. по положению в спектре и форме сигнала отвечает двум протонам амидной группы. [c.153]

    Девять эквивалентных протонов содержит радикал трет-бутил (СНз)зС—, и синглет при 1,28 м, д. могли дать его протоны. Метильная группа содержит три эквивалентных протона, а химический сдвиг ее свидетельствует о том, что она непосредственно связана с 5р -гибридизованным атомом углерода (2,28 м. д.). Четырехпротонный сигнал в слабом поле в области 6,9—7,4 м. д. можно отнести за счет бензольного ядра, а по виду мультиплета можно сказать, что неизвестный углеводород представляет собой п-дизамещенный бензол, ароматические протоны которого дают систему протонов АА ВВ. На основании этого анализа можно считать, что углеводород имеет структуру СНз — СаН4 С(СНз)з, т. е. структуру п-трет-Ьухит.-толуола. [c.156]

    Однако возможны и два других направления превращения бромоний-иона. Он может отщеплять протон метильной группы, и образующиеся экзометиленовые группы могут присоединять к себе бром  [c.282]

    Наконец, из спектров протонного магнитного резонанса при определенном опыте можно сделать вывод о наличии групп СеНз и О—СН2СН3. Сигналы поглощения протонов фенильной группы лежат примерно в области 6 = 7 8, протонов метиленовой группы — около 6 = 4,5 и протонов метильной группы около 6= 1,2. [c.29]

    Химический сдвиг протонов метильной группы, м.д. (ду5лет, /= 21 ГЦ) [c.133]

    Из табл. 9 видно, что замена метильной группы в ацетоне на этильную не изменяет кислотность оставшейся метилыюй группы. Наиболее кислыми оказываются атомы водорода метиленовой группы, наименее кислыми — р-метильной группы. В окиси мезитила наиболее кислыми являются -метильные (сопряженные с двойной связью) и метинные (у двойной связп) протоны протоны а-метильной группы по кггслотности не отличаются от протонов метильных групп в ацетоне. Таким образом, для этих кетонов кислотность увеличивается при переходе от ацетона к метилэтилкетону и окиси мезитила. Имеющиеся данные по кинетике алкилирования различных кетонов [65] в общем подтверждают зависимость скорости реакции от кислотности (табл. 10). [c.39]


Смотреть страницы где упоминается термин Протоны метильных групп: [c.30]    [c.153]    [c.299]    [c.28]    [c.73]    [c.225]    [c.81]    [c.85]    [c.85]    [c.91]    [c.96]    [c.97]    [c.125]    [c.129]    [c.68]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами -> Протоны метильных групп

Установление структуры органических соединений физическими и химическими методами том 1 -> Протоны метильных групп




ПОИСК





Смотрите так же термины и статьи:

Метильная группа

Метильные протоны



© 2025 chem21.info Реклама на сайте