Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние неводных растворителей на силу кислот и оснований

    Влияние неводных растворителей на силу кислот и оснований Поведение электролитов в различных по характеру средах. [c.187]

    Влияние неводных растворителей на силу кислот и оснований [c.145]

    Известно, что растворитель оказывает большое влияние на силу кислот и оснований. Нередко кислоты и основания слабо диссоциирующие в водных растворах, в других растворителях становятся более сильными. На этом явлении основаны многочисленные методы неводного титрования, позволяющие выполнять ряд определений, невозможных в водных растворах. Пример такого определения— потенциометрическое титрование анилина в гликолевой среде. [c.330]


    Пользуясь уравнениями, количественно характеризующими изменение силы кислот оснований в разных неводных растворителях, рассмотрим, как изменяются под их влиянием указанные выше соотношения в константах. [c.525]

    Очень часто, как было указано в гл. 2, неводные растворители по их влиянию на относительную силу кислот, оснований и солей и по их способности изменять силу электролитов делят на два класса диференцирующие и нивелирующие [13, 550]. Понятия и представления о дифференцирующих и нивелирующих растворителях оставались до самого последнего времени недостаточно четкими и часто смешивались с классификацией растворителей по их протонно-донорно-акцепторным свойствам. В данной книге эти понятия четко разграничены. [c.168]

    Кроме такой классификации возможна классификация растворителей по признаку их влияния на относительную силу кислот и солей, по их способности изменять соотношение в силе электролитов. По этому признаку растворители можно подразделить на нивелирующие и дифференцирующие. К нивелирующим относят те растворители, в которых кислоты, основания и соли уравниваются по своей силе, или, более осторожно, — растворители, в которых соотношения в силе электролитов, свойственные их водным растворам, сохраняются. К ним относятся прежде всего все растворители, содержащие гидроксильную группу — спирты, фенолы. В дифференцирующих растворителях проявляется значительное различие в силе электролитов, и в частности в силе кислот и оснований. К ним относятся прежде всего растворители, не содержащие гидроксильных групп альдегиды, кетоны, нитрилы и т. д. В этих растворителях соотношение в силе электролитов иное, чем в воде. Обычно такие растворители не являются донорами протонов, но и пе являются хорошими их акцепторами. Дифференцирующим действием могут обладать в той или иной степени все неводные растворители. [c.274]

    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]


    Конечно, влияние растворителей так сложно и многообразно, что его трудно оценить полностью с помощью выведенных уравнений. Поэтому при выборе растворителей, где это только возможно, следует пользоваться данными о силе кислот, оснований и об ионном произведении в неводных растворителях. па основании этих данных можно безошибочно выбрать необходимый растворитель- Если эти данные отсутствуют, выбор растворителей следует основывать на приведенных выше уравнениях, а также на аналогии с приведенными ниже типичными случаями титрования в неводных средах. [c.884]

    При изучении влияния растворителя на свойства растворов электролитов в качестве наблюдаемого свойства целесообразно выбрать изменения энергии сольватации ионов и молекул, так как при помощи этих величин можно количественно оценить изменение ряда термодинамических свойств. Так, в работе Измайлова [1] показано, что изменение таких свойств как растворимость, сила кислот, оснований и солей, ЭДС гальванических элементов при переходе от водных к неводным растворам количественно определяется разностью энергий сольватации и гидратации ионов и молекул. В случае сильных электролитов изменения термодинамических свойств определяются разностью энергий сольватации и гидратации ионов. [c.118]

    Применение неводных растворителей позволяет осуществлять дифференцированное титрование многокомпонентных смесей кислот или оснований. Прогнозирование с помощью номограмм заключается в последовательном установлении возможности титрования данного г-го компонента в присутствии всех последующих и установлении скачка ДрН около точки, отвечающей окончанию титрования данного компонента. Индексом г обозначают номер определяемого компонента в порядке возрастания значений рКа(Ь), характеризующих силу кислот (оснований) в анализируемой смеси (г =1, 2,. .., и). Титрование в неводных растворителях осуществляют титрантами различной силы с образованием диссоциирующих или ассоциированных солей, причем существенное влияние на условия титрования оказывает автопротолиз растворителя. [c.45]

    Нивелирующе-дифференцирующее действие растворителей. Помимо классификации растворителей по их протонно-донорно-акцеп-торным свойствам, изложенной выше, неводные растворители классифицируют также по признаку их влияния на силу кислот, оснований и солей и по способности изменять соотношения в силе электролитов по сравнению с их соотношениями в водных растворах. В этом случае различают растворители, проявляющие нивелирующее и дифференцирующее действие в отношении определенных групп электролитов. [c.285]

    Различное изменение силы кислот и оснований под влиянием растворителей приводит к тому, что в неводных растворителях изменяется соотношение в силе кислот и оснований, в результате чего растворители проявляют дифференцирующее действие. [c.288]

    Влияние растворителей на силу оснований подобно их влиянию на силу кислот. Неводные растворители уменьшают силу оснований, только кислые растворители с высокой диэлектрической проницаемостью усиливают их. Установлено также три типа дифференцирующего действия растворителей на силу оснований. Дифференцирующее действие растворителей на силу оснований выражено слабее, чем на силу кислот. [c.288]

    В работе совместно с С. М. Петровым автор исследовал интервалы перехода и константы диссоциации ряда цветных и флюоресцентных индикаторов в неводных растворителях в бутиловом спирте, ацетоне и их смесях с водой. Оказалось, что влияние растворителей на силу индикаторов подчиняется тем же закономерностям, которые были установлены ранее для кислот и оснований, не имеющих индикаторных свойств. В табл. 47 Приводим данные о константах диссоциации цветных индикаторов в ряде неводных растворителей. Здесь приведены наши данные для бутилового спирта, ацетона и его смесей с водой, метилового и этилового спиртов. [c.460]

    Под влиянием растворителя изменяется не только сила кислот и оснований, но и соотношение в ионном произведении растворителей и силе кислот или оснований, а также и соотношение в силе кислот и соответственно в силе оснований. Поэтому применение неводных растворителей может значительно улучшить условия кислотно-основного титрования. [c.872]

    Влияние растворителей на силу оснований подобно их влиянию яа силу кислот. Неводные растворители уменьшают силу оснований, только кислые растворители с высокой диэлектрической проницаемостью [c.333]

    На электропроводность растворов электролитов оказывает известное влияние диэлектрическая проницаемость е растворителя, поэтому с позиций теории Аррениуса естественно ожидать, что в растворителях с меньшей е СНзСООН должна проводить электрический ток хуже, чем в средах с высоким значением е однако растворы СНзСООН в нитробензоле (8=34,75) —растворителе с высоким значением е, вопреки ожиданию проводят электрический ток хуже, чем в бутил-амине (е=5,3) и в воде (е=78,3). Более того, в бутиламине уксусная кислота проявляет более кислые свойства, чем в воде сам бутиламин, не проводящий тока и характеризующийся слабыми основными свойствами в водной среде, ведет себя в растворе уксусной кислоты как более сильное основание. Это не означает, что степень диссоциации уксусной кислоты в среде бутиламина выше, чем в воде. Понятия о силе электролита в водной среде строятся, как известно, на представлении о полной или частичной диссоциации данного вещества на ионы. Применительно к неводным растворам эти понятия приобретают другой смысл, так как сила кислоты обусловливается способностью электролита проявлять в той или. иной степени протонно-донорные свойства по отношению к растворителю и ионизироваться с образованием промежуточных соединений — ионных пар (подробней см. ниже). [c.9]


    Неводные растворители могут оказывать существенное влияние на скорость и механизм реакций, что объясняется многими причинами (влиянием е среды, вязкостью, избирательной и специфической сольватацией, образованием водородных связей) на кинетику изотопного обмена, протекающего в их среде изомерию органических соединений растворимость неорганических и органических соединений полярографическое поведение вещества диссоциацию, ассоциацию и комплексообразование коэффициенты активности электродные потенциалы окислительно-восстановительные потенциалы силу кислот и оснований хроматографическое разделение и др. [c.208]

    В иоследовз ниях последних лет, особенно в работах Н. А. Измайлова, было показано, что ПО Д влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований, солей. В зависимости от свойств и структуры растворителя одно и то же вещество может быть неэлектролитом, Сильным или слабым электролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Подобная зависимость ц изменение свойств вещества под влиянием растворителей широко используются в данное время для решения ряда аналитических задач при электрометрическом титровании, поля-ро графи ческом, амперометричеоком и других методах физикохимического анализа для а) повышения либо понижения растворимости вещества б) усиления либо ослабления силы кислот, оснований и солей в) изменения соотношения между ионным [c.129]

    Влияние неводных растворителей сказывается не только в изменении /Сдисс. кислот и оснований, но и в изменении соотношения в силе кислот или оснований. Это обстоятельство значительно расширяет возможность кислотно-основного титрования, так как в неводных растворах можно дифференцированно титровать смеси электролитов, Кдисс- которых в водном растворе очень близки. Возможность раздельного титрования смеси кислот или осно- [c.46]

    Пользуясь уравнениями, количественно характеризующими изменение силы кислот и оснований под влиянием неводных растворителей, выведенными в восьмой главе, рассмотрим, как в первом приближении изменяются под их влиянием указанные выше соотношения в константах, рпределяю-щие условия титрования. [c.875]

    Дифференцирующее действие неводных растворителей вызывает изменение соотношения в силе электролитов и объясняется специфическим действием растворителя на растворенное вещество подавлением диссоциации кислот сильно протогенными и оснований сильно протофильными растворителями и уменьшением диссоциации под влиянием неводных растворителей с низкими значениями диэлектрической проницаемости неравномерным изменением значений р/Сл и р/Св растворенных электролитов по сравнению с их значениями в водных растворах и связанным с этим резкихм изменением Арх Сл и Ар/Св различным влиянием на силу слабых и сильных кислот и слабых и сильных оснований например, сила минеральных кислот под влиянием протогенных растворителей снижается в меньшей мере, чем сила слабых кислот, а сила сильных оснований под влиянием протофильных растворителей — в большей степени, чем сила слабых оснований. [c.176]

    Под влиянием неводных растворителей с различной величиной констант автопротолиза сила кислот, оснований и степень диссоциации солей изменяется в неодинаковой степени. Это дифферен-цируюш ее действие неводных растворителей используется для титрования смесей, раздельное определение компонентов которых в водной среде невозможно из-за гидролиза продуктов реакций. В основе такого действия лежат кислотно-основные или донор-ноакцепторные свойства растворителей и растворимых веществ. [c.157]

    Как уже говорилось выше, влияние неводных растворителей сказывается не только в изменении К кислот и оснований, но и в изменении соотношения в силе кислот или оснований. Это обстоятельство значительно расширяет возможность кислотно-основного титрования, так как в неводных растворах можно дифференцированно тит 50вать смеси электролитов, значения К которых в водном растворе очень близки. Возможность раздельного титрования смеси кислот или оснований определяется соотношением /Снап, п/Кнап, 1 или /Св, п//Св, I- В среде дифференцирующих растворителей эти соотношения оказываются значительно меньше, чем в водных растворах. [c.446]

    При переходе от воды к неводному растворителю величина электростатического взаимодействия ионов с растворителем уменьшается, а энергия ионов увеличивается. Наоборот, энергия сольватации молекул НА и В с переходом от воды к неводному растворителю увеличивается, а энергия (изобарный потенциал) молекул уменьшается а так как различие в константах определяется разностью 21g7o jj—2 lg7oмoлeкvл> величина А onst, значительно больше, чем это следует из теории Бренстеда. Нужно, однако, иметь в виду, что в действительности влияние растворителей на силу оснований не так уже сильно отличается от влияния на незаряженные кислоты, [c.355]

    Завершающим штрихом в вопросе о соотносительном влиянии химического и физического факторов на силу электролитов может служить сопоставление силы аминов в воде с силой электролитов в низкополярном (уксусная кислота) и высокополярном (муравьиная кислота) кислотных растворителях. Хотя по отношению к аминам вода — намного более слабая кислота, чем перечисленные неводные растворители, но благодаря ее высокой ДП, амины в воде более сильные электролиты, чем в уксусной кислоте. Но в муравьиной кислоте действие ДП преобладает в этом растворителе амины намного более сильные основания, чем в воде. [c.60]

    Простым, удобным и быстрым методом оценки влияния растворителей на силу кислот и оснований является метод определения относительной кислотности электролитов по потенциалам полунейтрализации. В момент, когда нейтрализовано 50% определяемой слабой кислоты или слабого основания, pH = рХ- Следовательно, величина потенциала полунейтрализации определяется величиной /Сдисл титруемого электролита и может характеризовать его относительную силу в неводных растворах. [c.37]

    Исследования, проведенные Харлоу [409], по изучению факторов, влияющих на устойчивость неводных растворов четвертичных аммониевых оснований и влияния структуры катиона на условия титрования кислот показали, что самыми устойчивыми титрантами являются гидроокиси тетраметил-, тетрабутил- и тетраэтиламмония и наименее устойчивым — гидроокись триметилбензиламмо-ния. Устойчивость растворов увеличивается с увеличением содержания воды в титранте вследствие того, что относительно высокая кислотность воды понижает основность этих растворов и большая сольватирующая способность воды понижает степень ассоциации ионов титрантов. Однако увеличение содержания воды мешает определению очень слабых кислот и анализу смесей кислот различной силы. Разбавление спиртовых растворов нейтральными или основными растворителями с целью увеличения основности титрантов понижает их устойчивость. [c.105]

    Как следует из седьмой и восьмой глав, под влиянием растворителей также изменяются соотношения в силе кислот или в силе оснований (дифференцирующее д ейств ие растворителей). Это изменение соотношения в константах диссоци-гции кислот или оснований в неводных, особенно в дифференцирующих, растворителях с успехом использовано автором я другими исследователями для улучшения условий раздельного титрования смеси кислот, смеси оснований и солей по вытеснению. [c.873]

    При переходе от воды к неводному растворителю величина электростатического взаимодействия ионов с растворителем уменьшается, а энергия ионов увеличивается. Наоборот, энергия сольватации молекул НА и В с переходом от воды к неводному растворителю увеличивается, а энергия (изобарный потенциал) молекул уменьшается а так как различие в константах определяется разностью 21gyg — Омолек л величина А onst значительно больше, чем это следует из теории Бренстеда. Нужно, однако, иметь в виду, что в действительности влияние растворителей на силу оснований не так уже сильно отличается от влияния на незаряженные кислоты, хотя, как правило, оно несколько меньше и составляет, например, для метилового спирта около 1,5 вместо 4 единиц р/С для незаряженных кислот, для этилового 4 вместо 5,5 и для бутилового от 5 до 6—так же, как и для карбоновых кислот (табл. 37). [c.401]

    В настоягцей работе приводятся некоторые результаты при-мепення меченых атомов для анализа по методу осаждения в неводных растворителях, в частности, результаты аргентомет-рического титрования органических кислот и солей в метиловом спирте, ацетоне, смесп диоксана с метиловым спиртом используется изотоп серебра Выбор растворителей сделан нами на основании соображений, вытекаюш,их из единой теории влияния растворителей на силу электролитов подобно тому, как это сделано для выбора растворителей для кислотно-основных определений [2, 3]. [c.446]


Смотреть страницы где упоминается термин Влияние неводных растворителей на силу кислот и оснований: [c.912]   
Смотреть главы в:

Основы аналитической химии Часть 2 -> Влияние неводных растворителей на силу кислот и оснований

Основы аналитической химии Книга 2 -> Влияние неводных растворителей на силу кислот и оснований

Основы аналитической химии Издание 3 -> Влияние неводных растворителей на силу кислот и оснований

Основы аналитической химии Кн 2 -> Влияние неводных растворителей на силу кислот и оснований




ПОИСК





Смотрите так же термины и статьи:

Влияние оснований

Кислот и оснований сила кислот

Кислоты и основания в неводных растворителях

Кислоты сила

Неводные растворители

Основания и кислоты

Основания сила

Основания сила, влияние растворителей

Растворители влияние на силу кислот,

Растворители на силу кислот

Растворители оснований



© 2025 chem21.info Реклама на сайте