Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические модели. Модель Максвелла

Рис. IX. 2. Механические модели Максвелла (а), Кельвина —Фойгта (б), двойная модель Максвелла (в), стандартного линейного тела (Зинера) (г) и обобщенная модель Максвелла ( ), применяемые для опнсани(Г вязкоупругих свойств полимеров Рис. IX. 2. <a href="/info/1335770">Механические модели Максвелла</a> (а), Кельвина —Фойгта (б), <a href="/info/134019">двойная модель</a> Максвелла (в), <a href="/info/320971">стандартного линейного тела</a> (Зинера) (г) и <a href="/info/318093">обобщенная модель Максвелла</a> ( ), применяемые для опнсани(Г <a href="/info/189870">вязкоупругих свойств</a> полимеров

Рис. VII.3. Механические модели тел Максвелла (а), Кельвина (б) и Шведова —Бингама (в) Рис. VII.3. <a href="/info/154133">Механические модели</a> тел Максвелла (а), Кельвина (б) и Шведова —Бингама (в)
Рис. 4. Механическая модель Максвелла — Шведова и Кельвина. Рис. 4. <a href="/info/1335770">Механическая модель Максвелла</a> — Шведова и Кельвина.
    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Для качественного описания вязкоупругости полимеров применяются различные механические модели Максвелла, Кельвина — Фойгта, обобщенные модели Максвелла и др. [c.236]

    Значительно лучшим, хотя также качественным приближением, дающим представление о молекулярном механизме, ответственном за вязкоупругое поведение линейных аморфных высоко-полимеров, является четырехкомпонентная механическая модель Алфрея (рис. 1.5), состоящая из последовательно соединенных моделей Максвелла и Кельвина—Фойгта. [c.20]

    Основываясь на независимом друг от друга и аддитивном характере упругой, высокоэластической и вязкотекучей составляющих деформации для линейных полимеров, целесообразно было рассматривать общую механическую модель, в которой бы учитывались особенности молекулярного строения полимера. Поскольку общую деформацию можно записать в виде е = еупр + ввэл + Бт (для отдельных физических состояний можно пренебречь какой-либо составляющей), то в общей модели, во-первых, необходимо их все учитывать, и, во-вторых, выс окоэластические свойства, проявляющиеся для стеклообразного и вязкотекучего состояний, а также упругие и пластические свойства для высокоэластического состояния должны учитываться с помощью соответствующих элементов. Такой обобщенной моделью может служить механическая система, в которой вязкие свойства полимеров описываются элементом т)т, высокоэластические — ячейкой с содержащимися в ней элементами Максвелла 1 — т]1 и 2 — т]2, а упругие свойства — системой Ей — Есч — Т1ст (рис. II. 18). [c.173]

    МЕХАНИЧЕСКИЕ МОДЕЛИ. МОДЕЛЬ МАКСВЕЛЛА [c.21]

    Класс вязкоупругих материалов в качестве простейших представителей этого класса включает вязко-упругую жидкость (тело Максвелла) и вязкоупругое твердое тело (тело Кельвина). Механическая модель вязкоупругой жидкости представляет собой последовательно соединенные элементы упругого и вязкого сопротивлений, а модель вязкоупругого твердого тела — те же элементы, соединенные параллельно. Примером вязкоупругой жидкости является полиизобутилен, а примером вязкоупругого твердого вещества — набухшая в масле резина. [c.671]

    Простейшая механическая модель вязкоупругой жидкости может быть лол /чена гтослгдозатгльхпгм соедиисписм нружины и поршня (так называемая жидкость Максвелла). Реологическая модель вязкоупругой жидкости Максвелла записывается з виде [c.14]

    К которым относятся и рассматриваемые нами композиции. Наглядное представление об этих изменениях можно получить с помощью простейщих механических моделей Максвелла и Кельвина — Фогта [4]. [c.198]

    Ползучесть линейного полимера хорошо описывается также объединенной механической моделью, сочетающей модель Максвелла и модель Кельвина — Фойхта (рис, 9.8). На рис. 9.9 показаны кривая ползучести и кривая упругого последействия, построенная в соответствии с объединенной моделью. К моменту времени / общая деформация складывается из мгновенно упругой (пружина, 1-й элемент), замедленно упругой, эластической (2-й элемент) и необратимой вязкой (3-й элемент, поршень)  [c.124]

    Для описания эффекта релаксации напряжений (хотя бы качественного) пригодна вторая простейшая двухэлементная механическая модель (модель Максвелла), представляющая сабой последовательное соединение упругого и вязкого элементов (рис. 1.29). [c.59]

    Механические модели типа моделей Максвелла и Кельвина — Фойхта не всегда правильно передают основные особенности механического поведения полимеров. Обычно каждая модель достоверно передает лишь какую-либо одну из особенностей механических свойств эластомеров. В дальнейшем мы увидим, что некоторые модели отображают и свойства стеклообразных и кристаллических полимеров. [c.125]

    Наличие спектра времен релаксации также моделируют механическими моделями. Простейший способ — параллельное соединение многих моделей Максвелла. Число моделей равно числу времен релаксации. На рис. 9.20 показана модель Каргина — Слонимского, [c.140]

    Реология конкретных систем может быть наглядно выражена с помощью механических моделей. Комбинации моделей простых тел — идеально-вязкого (ньютоновского — N), идеально-упругого (гу-ковского — Н) и дополнительной нагрузки, символически представленной как элеменг сухого трения (тело Сен-Венана — 81У), позволяют синтезировать более сложные системы. Последовательное сочетание упругого и вязкого элементов (Н — N) дает релаксационное тело Максвелла (М), а параллельное сочетание этих элементов (Н/К )— тело Кельвина (К), характеризующееся упругим последействием. Для упруго-вязко-пластичных релаксирующих систем типа глинистых суспензий и паст, цементных растворов, мучного теста и т. п., обладающих начальной прочностью и упругим последействием применяются еще более сложные модели, например тело Шведова [Н (М/31У) ] или его упрощенные модификарии — нерелаксирующее тело Бингама [Н — (К/81У)] или тело Бюргерса [М — К], не имеющее элемента сухого трения, но обладающее упругим последействием [27 ]. Набор пружин (Н), поршней (N) и ползунов (81У), образующих модели этих тел, имеет различные вязкости т), упругости Е и силы трения /, позволяющие зачастую на полуколичественном уровне воспроизводить поведение ряда систем [25]. При этом представляется возможным выбрать подходящую модель и определить наименьшее количество независимых переменных — реологических параметров и условных величин, которые необходимы для ее характеристики [20]. [c.231]


    Некоторыми исследователями [11.9] термодинамический подход к разрушению осуществляется формально без выяснения природы механических потерь. Процесс разрушения рассматривается на основе реологических моделей Кельвина, Максвелла и др. причем критерием разрушения является достижение упругой энергией (в общем случае внутренней энергией) некоторого предельного значения, что сближает механический подход, рассмотренный выше, с термодинамическим подходом. [c.287]

    Уравнению (1.100) отвечает простая механическая модель, показанная на рис. 1.16, где предполагается, что закон деформации пружины у 1 oпиQывaeт я линейным соотношением у х = а закон деформации поршня у 2 вязкой жидкости (демпфера) представляется уравнением у 2 = Так как суммарная деформация у является суммой деформаций пружины ух и поршня уг . у или =71+72 и подстановка значений ух и у21 выраженных через напряжения, приводит к уравнению (1.100). Механическую модель, представленную па рис. 1.16, называют моделью Максвелла, а реологическое уравнение состояния (1.100) — уравнением Максвелла соответственно вязкоупругую среду,. свойства которой описываются этим реологическим уравнением состояния, называют телом Максвелла. [c.92]

    Одним из способов описания вязкоупругого поведения реальных тел является использование механических моделей. Наиболее распространенными являются модели Максвелла, Кельвина — Фойхта и реологическая модель линейного стандартного тела. Рассмотрим эти модели и покажем, что они могут быть получены как следствия феноменологической теории, изложенной выше. [c.34]

    Высокоэластичность коагуляционных структур, образованных переплетением волокнистых частиц, а также цепных макромолекул, связана прежде всего с деформируемостью самих волокон и макромолекул. Как известно, уравнения, основанные на простых механических моделях Максвелла (последовательно соединенные упругий и вязкий элементы) и Кельвина—Фойгта (параллельно соединенные упругий и вязкий элементы), не позволяют количественно описать поведение высокоэластичных систем. В современной литературе получило широкое распространение описание кинетики эластической деформации и релаксации напряжений в таких системах с помощью представления о спектре периодов релаксации, соответствующем сочетанию множества упругих и вязких элементов [35]. Вместе с тем, как показала Л. В. Иванова-Чумакова [36], кинетика развития и спада высокоэластической деформации ряда высокомолекулярных структурированных систем может быть описана простыми уравнениями следующего вида  [c.20]

    Механические модели. Тело Максвелла. Представления об упругости материала, полностью подчиняющегося закону Гука, и вязкой жидкости, удовлетворяющей закону Ньютона, оказываются двумя краеугольными камнями, опираясь на которые, можно расшифровать поведение всех реальных материалов [9, с. 28]. [c.31]

    Модель Максвелла представляет собой наиболее общий механический аналог жидкости и позволяет удовлетворительно имитировать поведение линейных полимеров. С ее помощью удается очень наглядно описать релаксацию напряжений при заданной деформации. [c.30]

    Для вязкоупругого тела (модель Максвелла) тангенс угла механических потерь равен [c.212]

    Веверка [229], напротив, показывает невозможность описания поведения битума с помощью простых механических моделей типа Максвелла или Кельвина — Фойгта и считает необходимым использование для оценки упруго-вязких свойств битума спектров релаксации и ретардации. Для практического применения автсгр-рекомендует приближенные методы оценки модуля упругости битумов, в частности при динамических испытаниях, например с помощью ультразвука. Эти методы шозволяют установить зависимости от температуры и реологического типа битума. Исследования реологических свойств битумов в большинстве сводятся к описанию закономерностей течения, носящих зачастую эмпирический характер. При этом битумы характеризуют значениями эффективной вязкости, полученными в условиях произвольно выбранных постоянных напряжений сдвига или градиентов скорости [161, 190]. [c.72]

    Механическим аналогом. модели Максвелла являются пружина и демпфер (поршень, движущийся в вязкой жидкости), соединенные последовательно (рис. 54). Эта модель иногда используется для описания эксгеримен-тов по релаксации напряжений. Если в выражении (7.34а) для дифференциального оператора м ауля положить равновесный модуль Со = 0, а из вс Х положить не равным нулю лишь одно значение г, то (7.34а) примет вид д [c.243]

    В дальнейшем (в 1961 г.) Г. Л. Слонимский подверг пересмотру предложенную ранее им совместно с В. А. Каргиным механическую модель полимера [51—53]. Было обращено внимание на необходимость рассмотрения высокоэластической деформации как независимой разновидности, аналогичной упругой и пластической. Для описания релаксационных механических свойств полимеров при помощи новой модели были введены новые математические приемы, основанные на использовании дробных интегральных и дифференциальных операторов. Предложенные методы [51—53] позволяют теоретически исследовать релаксационные свойства тел, обладающих любыми промежуточными свойствами между упругим телом Гука, вязкой жидкостью Ньютона, упруго-вязким телом Максвелла и вязко-упругим телом Кельвина — Фойгта. Это позволяет произвести и ряд других обобщений. Помимо большей физической обоснованности нового подхода, он обладает еще и тем преимуществом, что позволяет понять принципы возникновения ряда закономерностей релаксационных явлений, установленных эмпирически и содержащих дробные степени времени. [c.324]

    Механическая модель тела Максвелла (рис. 6, а-Н) состоит из элемента Гука с модулем упругости О и элемента Ньютона с коэффициентом вязкости ц, соединенных последовательно. На оба элемента действует одинаковая сила т, т. е. тн = т.у = т. Изменение длины I символизирующее деформацию у, равно сумме изменений длин элементов Гука (/н) и Ньютона 1к, соответствующих составляющим деформации уя и у . Реологическое уравнение тела Максвелла можно получить следующим образом. Деформация ньютоновского элемента под действием напряжения т = т(<) в некоторый момент времени t [c.46]

    Тело Шведова — это тело, сочетающее в себе свойства упругости, вязкости и пластичности. Характер этого сочетания иллюстрирует механическая модель (рис. 10, а-И). Она состоит из элемента Гука с модулем упругости Оц и соединенной последовательно с ним системой,, которая включает параллельно соединенные между собой элементы Сен-Венана с пределом текучести Тт и Максвелла с модулем упругости Ом и коэффициентом вязкости (I. Рассматривая эту систему под действием нагрузки т, легко заметить, что деформация тела Шведова (в случае естественного исходного состояния) при т Тт происходит только за счет деформации элемента Гука, т. е. [c.53]

    Известно, что нет принципиальной разннны в реологических свойствах реальных жидкостей и твердых тел. Объясняется это тем, что те и другие представляют собой конденсированное состояние вещества, характеризуемое высокой плотностью упаковки атомов и молекул и малой сжимаемостью. Жидкости и твердие тела имеют практически одинаковую природу сил сцепления, которые зависят только от расстояния между частицами. Еще Максвеллом (более 100 лет назад) было выдвинуто представление о механических свойствах тел как о ненрерывном ряде переходов между идеальными жидкостью н твердым телом. Механические свойства были смоделированы с помощью последовательного соединения элементов Гука и Ньютона (рис. VII. 5). Модель получила название модели Максвелла. [c.360]

    Экспериментально установлено, что при течении дисперсных систем в области неразрушенных структур имеет место наложение деформаций сдвига (принцип аддитивности). Применение модельного анализа для определения вида деформации е (т), при помощи которого условно заменяют данную реальную систему схемой последовательных и параллельных совокупностей идеально упругих и вязких или пластично-вязких элементов, позволяет в каждом отдельном случае ориентироваться в числе независимых характеристик механических свойств этой системы и проследить в полуколичественном соотношении с экспериментальными данными все основные деформационные и релаксационные свойства неразрушенных структур. Кривые е (т) многих дисперсных систем могут быть с достаточной точностью описаны при помощи последовательно соединенных моделей Максвел-ла — Шведова и Кельвина (рис. 4). Модель Максвелла — Шведова состоит из пружины с модулем i, последовательно связанного с ним вязкого элемента, моделирующего наибольшую пластическую вязкость t]i, который блокирован тормозом на сухом трении, моделирующим предел текучести Р х- Модель Кельвина содержит упругий элемент с модулем и параллельно связанный с ним задерживающий вязкий элемент (демпфер), моделирующий вязкость упругого последействия rjj. [c.20]

    Все реальные тела обладают свойствами, которые являются комбинацией трех фундаментальных свойств упругостью, вязкостью и пластичностью (внутренним трением). В зависимости от преобладающего влияния тех или иных свойств жидкости делятся на группы и назьшаются упруговязкими, вязко1шастичными, псев-допластичными ( чисто вязкие ), а в зависимости от предложенной механической модели и соответственно предложенного реологического уравнения жидкости назьшаются по имени авторов уравнение Шведова — Бингама (вязкопластичные), уравнение Прандтля (псевдопластичные), уравнение Максвелла (упруговязкие) и т. д. [122]. [c.131]

    Водные дисперсии глинистых минералов являются коагуляционными структурами с весьма совершенной тиксотропией. Многочисленные исследования механических свойств глинистых минералов показали [1, 19—28], что процессы развития деформаций во времени Ё = / (т ) при постоянном напряжении сдвига Р хорошо описываются уравнением для последовательно соединенных моделей Максвелла — Шведова и Кельвина. Опи характеризуются модулями быстрой El и медленной Е эластических деформаций, условным статическим пределом текучести Р и наибольшей пластической (шведовской) вязкостью Til [22]. Вычисляемые из этих констант структурно-механические характеристики — эластичность А,, пластичность по Воларовичу PjiJf i и период истинной релаксации 0i— являются критерием для оценки технологических свойств различных технических дисперсий. Авторами статьи, например, установлены соответствующие структурно-механические критерии для керамических масс и буровых глинистых растворов [23—26]. [c.190]

    Сопоставление механических характеристик элемента Кельвина—Фойхта с механическими характеристиками реальных полимеров указывает на существование качественного сходства. Однако попытки количественного описания поведения реальных полимеров при помощи уравнения движения модели Кельвина—Фойхта наталкиваются на такие же затруднения, что и при использовании однокомпонентной модели Максвелла. [c.34]

    С позиций обобщенной модели Максвелла релаксационный спектр таких систем характеризуется наличием по крайней мере одного максвелловского элемента с вырожденной вязкостью, представляющего собой упругий элемент, модуль которого равен равновесному значению модуля системы с неразрушенной структурой. Этот вырожденный элемент Максвелла является механическим аналогом устойчивой пространственной структуры. Поэтому разрушение пространственной структуры должно сопровождаться исчезновением вырожденного максвелловского элемента и соответствующим изменением релаксационного спектра. Поскольку, однако, при тиксотропном разрушении происходит не только простое исчезновение предела текучести, но наблюдается также и постепенное уменьшение эффективной вязкости, соответствующей стационарному режиму течения (у = onst), то изменение релаксационного спектра, по-видимому, не ограничивается исчезновением только этого вырожденного элемента. [c.78]

    Существенным результатом работ В. А. Каргина с сотрудниками по изучению релаксационных процессов в полимерах явилось построение качественных представлений о молекулярном механизлю этих процессов, которые дополнили подобные же работы ленинградских исследователей (Я. И. Френкель, II. П. Кобеко, А. П. Александров, Ю. С. Лазуркин, С. Н. Жур-ков, Е. В. Кувшинский, Г. И. Гуревич) и хорошо согласовывались с количественной теорией Больцмана—Вольтера, примененной Г. Л. Слонимским для описания релаксационных механических процессов в полимерных телах. Необходимо отметить, что в результате указанных исследований В. А. Каргину и Г. Л. Слонимскому удалось впервые творчески использовать в применении к полимерным телам наследие физиков XIX столетия (Максвелла, Больцмана, Вольтера и др.), последовательно разработавших феноменологическую релаксационную теорию деформирования твердых тел. В. А. Каргину и Г. Л. Слонимскому удалось выяснить физическую сущность механических релаксационных процессов в полимерах и сделать доступными для экспериментальной проверки и для практического использования упомянутые феноменологические теории, а также построить первую физически обоснованную механическую модель линейного аморфного полимера. [c.11]

    Реакцию эластомера на напряжение или деформацию достаточно точно можно воспроизвести лишь с помопцью модели, состояш вй из сложного набора механических элементов (пружин и демпферов). Данная теория, однако, использует модифицированную модель Максвелла, в которой и Е представляют соответственно малый и большой модули материала, находящегося в стеклообразном состоянии, а вязкость т предполагается постоянной. Результирующая деформация растяжения б, (О может быть выражена следующим образом  [c.188]


Смотреть страницы где упоминается термин Механические модели. Модель Максвелла: [c.111]    [c.310]    [c.122]    [c.314]    [c.375]    [c.163]    [c.111]    [c.98]    [c.111]   
Смотреть главы в:

Основные процессы переработки полимеров Теория и методы расчёта -> Механические модели. Модель Максвелла




ПОИСК





Смотрите так же термины и статьи:

Максвелл



© 2025 chem21.info Реклама на сайте