Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие ионов водорода

    Сложные эфиры, в отличие от простых, с большей или меньшей скоростью расщепляются водой — подвергаются гидролизу с образованием вновь кислоты и спирта. Поэтому, как показано в схемах приведенных выше реакций, процесс этерификации обратим и доходит до состояния динамического равновесия. Ионы водорода, как и всякий катализатор, ускоряют протекание не только реакции этерификации, но и обратной ей реакции гидролиза таким образом в присутствии минеральной кислоты быстрее достигается равновесие в процессе этерификации. [c.578]


    Символическая запись = используется для того, чтобы указать смещение равновесия в левую сторону, однако подразумевается, что при этом устанавливается новое равновесие с прежним значением константы равновесия.) Ионы водорода, образованные из НС1, совершенно идентичны тем, которые возникают при диссоциации уксусной кислоты, и их воздействие, называемое влиянием общих ионов, заключается в том, что они подавляют ионизацию уксусной кислоты. Допустим, что концентрация обеих кислот одинакова и равна 0,1 моль/л. Тогда должны выполняться следующие соотношения  [c.273]

    РАВНОВЕСИЕ ИОНОВ ВОДОРОДА [c.21]

    Хотя в этом равновесии ионы водорода записаны в виде Н" , в водном растворе они всегда гидратированы (см. стр. 206). Правда, можно полагать, что образующиеся при этом ионы оксония НдО обычно во всех растворах, кроме наиболее концентрированных, соединены водородными связями еще с тремя молекулами воды, давая эффективную структурную единицу НдО (НзО)з. [c.291]

    Равновесие ионов водорода в растворах синтетических полиэлектролитов, содержащих как положительные, так и отрицательные заряды, не подвергалось детальному изучению. Тем не менее из имеющихся данных ясно видно влияние изменений конформации, происходящих в этих полимерах. [c.625]

    Мы коснемся несколько более подробно равновесия ионов водорода в растворе рибонуклеазы , чтобы выяснить, насколько приближенная теория соответствует экспериментальным результатам. Рибонуклеаза была выбрана потому, что она представляет собой один из простейших белков, а также потому, что содержание в ней аминокислот точно известно и мы знаем количество титруемых групп каждого типа (т. е. п , п ,. ..). Более того, вискозиметрические данные показывают, что молекулы этого белка имеют компактную форму, близкую к сферической, при всех значениях pH между 2 и И. [c.626]

    Равновесие ионов водорода или натрия между стеклянной фазой и раствором, очевидно, будет иметь место тогда, когда суммарная работа электрических и химических сил, действующих на ионы при переходе их из одной фазы в другую, равны нулю, т. е. когда [c.22]

    Известно, что условием межфазного равновесия относительно заряженных частиц является равенство их электрохимических потенциалов в этих фазах, т. е. в случае ионов водорода [c.174]

    Отношение активности иоиов натрия к активности ионов водорода, при котором устанавливается равновесие, равно примерно 10 . Такое соотношение невозможно реализовать ни в кислых растворах, где активност ) ионов водорода аи+ близка к единице, ни в щелочных, где она составляет около Ю , поэтому металлический натрий всегда неустойчив в контакте с водой. [c.185]


    Между различными реакциями изомеризации и цепями диспропорционирования существует тонкое равновесие. Ингибиторы, подавляющие диспропорционирование пентана, нарушают это равновесие и сильно снижают реакцию диспропорционирования, но влияя в той же степени на реакцию изомеризации. Эти вещества вообще способны реагировать с карбоний ионом и (или) с олефинами, регулируя их концентрацию. В этом отношении их функция сходна с действием буферов, применяемых для регулирования концентрации иона водорода в водных системах. [c.28]

    Получающиеся окрашенные ионы Вц тоже должны быть в равновесии с ионами водорода, так как возможна реакция [c.488]

    Ион Еодорода может, таким образом, связаться в молекулу уксусной кислоты или в молекулу воды. Ионы СНзСОО- и ОН как бы конкурируют друг с другом в связывании иона водорода. Поэтому в данном случае реакция нейтрализации доходит ие до конца, а до состояния равновесия  [c.255]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    По-видимому, в общем справедливо, что реакции, заключающиеся в простом переносе иона водорода между молекулами растворенного вещества и растворителя или другого растворенного вещества, являются достаточно быстрыми, чтобы считаться мгновенными в используемом в книге смысле. Например, вне зависимости от протекания других реакций, всегда можно ожидать, что в растворах будут поддерживаться следующие равновесия  [c.259]

    В расчетах равновесий обычно принимают ионное произведение воды с достаточной точностью равным Кцо = 1,00 10 при комнатной температуре. (Более того, в расчетах кислотно-основных равновесий принято записывать Кн о просто как 10 .) Это означает, что в чистой воде, где концентрации ионов водорода и гидроксидных ионов совпадают, [c.211]

    Добавление в раствор кислоты смещает равновесие диссоциации индикатора влево, а добавление основания смещает это равновесие вправо. Следовательно, метиловый оранжевый имеет красную окраску в кислых растворах и желтую-в основных. Интенсивность окраски таких индикаторов, как метиловый оранжевый, настолько велика, что она хорощо заметна даже при введении в раствор очень небольшого количества индикатора, неспособного существенно повлиять на pH раствора. Отношение концентраций диссоциированной и недиссоциированной форм индикатора зависит от концентрации ионов водорода в растворе, как это видно из выражения для константы диссоциации индикатора [c.234]

    Для 0,01 М раствора азотной кислоты этот источник действительно можно не учитывать. Концентрация ионов водорода, обусловленная кислотой, равна 10 моль-л , а концентрация [Н ] от диссоциации воды даже в чистой воде достигает всего 10 моль-л , т.е. в 100 тысяч раз меньше, чем от кислоты. Поскольку добавление ионов от кислоты подавляет диссоциацию воды, реальный вклад диссоциации воды в полную концентрацию ионов должен быть еще меньше. Можно найти концентрацию гидроксидного иона, которая обусловлена только диссоциацией воды, из выражения для константы равновесия [c.469]

    Приведенный пример приводит к неправдоподобному результату последовательное разбавление раствора кислоты (до 10 М) делает его основным Ясно, что такой вывод неверен. Дело в том, что концентрация иона водорода от кислоты понизилась до уровня, сопоставимого с концентрацией иона водорода, обусловленной диссоциацией воды. В этом случае неприменимо простое выражение для константы равновесия, которым мы пользовались до сих пор. При строгом рассмотрении диссоциации произвольной кислоты общего вида НА приходится иметь дело с четырьмя неизвестными концентрациями, [Н" ], [НА], [А ] и [ОН"], и четырьмя уравнениями, связывающими эти неизвестные  [c.471]

    Не надо упускать из вида, однако, что эта характеристика нейтральности относится только к температуре около 25° С. Для всех температур справедливо, что в нейтральной среде а + =. Но реакция (ХП, 15) эндотермическая = 3337 кал/моль при бесконечном разбавлении), поэтому с повышением температуры равновесие в ней смещается вправо, т. е. степень диссоциации воды возрастает. Следовательно, в любом данном растворе концентрации и активности ионов водорода и гидроксила при более [c.402]

    В реакциях, протекающих с участием слабых электролитов, влияние посторонних электролитов может проявляться в форме так называемого вторичного солевого эффекта. Так, например, реакция инверсии сахара катализируется ионами водорода. Если взять в качестве катализатора, например, уксусную кислоту, то концентрация ионов водорода будет определяться условиями равновесия кислоты  [c.603]


    Между атомным водородом в платине и ионами водорода в растворе возникает динамическое равновесие  [c.80]

    Возникновение различных форм диазосоединений зависит от концентрации ионов водорода в растворе в кислом растворе равновесие сдвигается в сторону образования солей диазония наоборот, при повышении pH среды оно сдвигается вправо, в сторону образования диазотат-иона. [c.107]

    Электроды в таком случае называют инертными, а потенциал определяется равновесием между адсорбированным на инертном электроде и растворенным веществом. Пример подобного электрода — платинированная платина, на которой адсорбирован водород, находящийся в равновесии с ионами водорода в растворе. При [c.129]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Как уже указывалось, реакции нейтрализации сильиы < кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ — слабый электролит и при которых молекулы малодиссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца. Они доходят до состояния равновесия, при котором соль сосуи ествует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции  [c.249]

    При добавлении к гидроксиду цинка кислоты возрастает концентрация ионов водорода. Пронзведе[1ие [Н+][ОН ] становится больше ионного произведения воды — идет процесс образования молекул Н2О из нонов при этом нарушается равновесие и в системе Zn(0H)2. Согласно принципу Ле Шателье, вследствие возрастания концентрации ионов Н+ и расхода ионов ОН , диссоина-ция Zn(ОН)2 по типу кислоты подавляется, а по типу основания усиливается. В итоге осадок 2п(ОН)2 растворяется и образуется соль, в которой цинк является катионом. Например, в случае соляной кислоты пойдет реакция  [c.257]

    Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н и СгОГ поэтому раствор дихромата имеет кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы СгО , т. е. хромат, а при избытке ионов водорода -— иоиы СгаО . т. е. дихромат. [c.656]

    Пользуясь уравнением (XIII,18), можно приближенно определить Eq/ , измерив потенциал прн нескольких значениях Со/с . Зная Е , можно по уравне[[ию (Х1П,17) рассчитать константу равновесия реакции. Если окислительно-восстановительные реакции протекают при участии ионов водорода, то окислительно-восстановительный потенциал системы зависит и от концентрации (активности) водородных ионов. Например, для системы МпО, —Мп  [c.292]

    Стеклянный электрод. Стеклянный электрод представляет собой тонкостенный стеклянный шарик, заполненный раствором электролита (рис. 127). Содержащиеся в стекле ионы натрия обмениваются в растворе с ионами водорода, которые с анионным остатком образуют слабодиссоциированные кремниевые кислоты. Этот обмен идет до устатговления равновесия. На границе стекло — раствор возникает потенциал, величина которого определяется только концентрацией ионов водорода, [c.296]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Хотя концентрация ионов водорода при разбавлении слабой кислоты уменьшается (об этом свидетельствует высокое значение pH), в диссоциированном на ионы состоянии оказывается большая доля молекул НАс. Здесь мы снова сталкиваемся с проявлением принципа Ле Шателье. Если разбавляют раствор, содержащий НАс, Н и Ас , и тем самым уменьшают общую концентрацию всех ионов и молекул, равновесие проявляет тенденцию к самоподдерживанию и реакция смещается в направлении увеличения общей концентрации растворенных частиц всех видов. Сопоставьте это поведение раствора с влиянием повышения давления на равновесие диссоциации газообразного аммиака, рассмотренным в гл. 4. [c.233]

    Мы получили успешный результат при определении констант кислотно-основных равновесий фумаровой кислоты на фоне перхлората натрия. Включенный в число определяемых параметров эффективный коэффициент активности ионов водорода так же, как и для одноосновных объектов, отличался от полученного из данных калибровки цепей по растворам сильной кислоты. [c.128]

    Кроме кислотно-основных равновесий мы применили описанный метод к исследованию равновесий комплексообразования. Исследование системы фумаровая кислота—кадмий—едкий натр на фоне перхлората натрия в области, в которой осадок фумарата натрия еще не образуется, показало, что все кажущиеся нарушения материального баланса по ионам водорода можно скомпенсировать подбором его эффективного коэффициента активности , причем комплексообразования не обнаружено. Для системы, в которой вместо фумаровой использована ма-леиновая кислота, обнаружен комплекс состава 1 1, причем без варьирования коэффициента активности иона водорода интерпретация данных была затруднительной. В этих расчетах использованы концентрационные константы кислот, вычисленные по тому же методу для систем без кадмия. [c.129]

    Возбужденная молекула 2-нафтола является более сильной кислотой, чем невозбужденная, потому диссоциация возбужденной молекулы успещно конкурирует с флуоресценцией и безызлучательными процессами деградации энергии электронного возбуж-деиия. Это приводит к тому, что в спектре флуоресценции 2- аф-тола даже в кислых растворах отчетливо видны две полосы. Более коротковолновая полоса соответствует флуоресценции недиосо-циированного 2-нафтола, более длинноволновая — флуоресценции 2-нафтолят-аниона, образовавшегося при диссоциации возбужден-иой молекулы 2-нафтола. Увеличение концентрации ионов водорода в растворе подавляет диссоциацию возбужденного 2-нафтола. В спектрах флуоресценции это проявляется как увеличение интенсивности флуоресценции недиссоциированного 2-иафтола и уменьшении интенсивности флуоресценции 2-нафтолят-аниона. Количественная обработка таких спектров при различных концентрациях иона водорода в растворе позволяет вычислить константу равновесия протолитической диссоциации возбужденного [c.77]

    Растворимость осадков, являющихся солями сильных кислот, почти не зависит от концентрации водородных ионов в растворе. Так, например, в равновесии с твердой фазой Ag l находятся ионы серебра и ионы хлора. Ионы хлора в растворе не связываются с ионами водорода, так как если бы образовывалась молекула НС1, то она тотчас же вследствие полной диссоциации распадалась бы опять на ионы. Поэтому хлористое серебро не растворяется в азотной кислоте. [c.39]

    Наоборот, на растворимость осадков, являющихся солями слабых кислот, кислотность раствора оказывает очень существенное влияние Так, ионы jO "" могут взаимодействовать с ионами кальция, образуя осадок щавелевокислого кальция. HoBbi O " могут реагировать такл е с ионами Н , образуя молекулы слабой щавелевой кислоты. Образование или растворение щавелевокислого кальция, степень осаждения кальция и другие характеристики равновесия зависят от концентраций реагирующих веществ, а также от величин константы диссоциации кислоты и произведения растворимости осадка. Величины произведений растворимости углекислого бария и щавелевокислого бария почти одинаковы. Однако угольная кислота слабее щавелевой, т. е. анион СО при прочих равных условиях связывается с ионами водорода сильнее, чем анион С О . Поэтому ВаСО, легко растворяется в уксусной кислоте, а растворимость ВаС О при тех же условиях почти не изменяется. Если два осадка являются солями одной и той же кислоты, например сульфидами, то при прочих равных условиях растворимость в кислотах зависит от величины произведения растворимости. Известно, что путем изменения концентрации ионов водорода достигаются многочисленные разделения катионов в виде сульфидов, фосфатов и других соединений металлов с анионами слабых неорганических и органических кислот. Таким образом, значение кислотности раствора для осаждения и разделения металлов очень велико. [c.39]


Смотреть страницы где упоминается термин Равновесие ионов водорода: [c.281]    [c.409]    [c.439]    [c.257]    [c.209]    [c.32]    [c.32]    [c.110]   
Смотреть главы в:

Определение pH теория и практика -> Равновесие ионов водорода

Определение рН теория и практика -> Равновесие ионов водорода




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы

Ионные равновесия



© 2025 chem21.info Реклама на сайте