Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электростатические валентные силы

    Электростатические валентные силы [c.69]

    Электростатические валентные силы 77 [c.77]

    Электростатические валентные силы 81 [c.81]

    Электростатические валентные силы 7 [c.87]

    Электростатические валентные силы 89 [c.89]

    Электростатические валентные силы 91 [c.91]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]


    Электростатические силы, отличающиеся от квантовомеханических валентных сил, не могут быть насыщены в химическом смысле, т. е. для них законы стехиометрии не [c.524]

    Правило II правило электростатической валентности). В устойчивой Координационной ионной- структуре сумма сил электростатика  [c.298]

    При превышении концентрации ассоциатов какой-то определенной величины различить индивидуальные ассоциаты невозможно. Они становятся взаимосвязанными и образуют сеть, пронизывающую весь кристалл. Хотя вследствие этого состояние системы не удается описать с помощью простой статистики, все же рассуждения, относящиеся к зарядам, остаются в силе. В этой ситуации оказывается уже недостаточным поддерживать электронейтральность кристалла в целом, но необходимо выполнять условия электронейтральности для более локальных участков. Отсюда вытекает сформулированное Полингом и Брэггом правило построения смешанных кристаллов (правило электростатической валентности) [29] если в структуре имеются катионы разных типов (С ), окруженные количеством анионов, равным у,-, и валентности катионов и анионов равны соответственно "Сг и 2а, то [c.521]

    Наиболее дальнодействующими могут быть электростатические силы. Их радиус действия имеет порядок дебаевской длины 1/х, равной, например, 0,3—1 мкм для разбавленных растворов 1—1-электролита (10 —10 моль/л). Поэтому толстые пленки воды и водных растворов электролитов (/1>500 А) устойчивы главным образом за счет П -составляющей расклинивающего давления. Это подтверждается сильной чувствительностью данного участка изотермы к концентрации и валентности электролита, от которых зависят значения х. Влияние П -составляющей существенно зависит от заряда поверхности подложки и пленки. В меньшей степени на величину П -составляющей влияет изменение температуры, что связано с обычно большой по сравнению с кТ величиной потенциалов адсорбции ионов. [c.286]

    Такое действие можно объяснить тем, что с увеличением заряда иона возрастает сила электростатического притяжения его к поверхности (что рассматривалось нами при оценке силового поля катионов различной валентности) и ионы большей валентности могут ближе подойти к поверхности, -вызывая этим более сильное сжатие диффузного слоя и соответствующее понижение -потенциала. [c.156]

    Силы химических связей (валентные силы) отличаются от известных в физике электростатических и магнитных сил, а также сил тяготения двумя важнейшими особенностями — целочисленностью и вытекающей из нее насыщаемостью и направленностью валентных сил. Целочислениость заключается в том, что силы, действующие между атомами в молекуле, могут быть охарактеризованы валентностью, которая имеет только целочисленные значения. [c.68]


    Ионный кристалл АХ образован ионами А+ и X", которые удерживаются вместе электростатическими (кулоновскими) силами. В случае идеальной ионной связи валентный электрон переходит от одного атома к другому (в кристалле Na I, например, электрон с 35-уровня натрия переходит на Зр-уровень хлора). Электронные оболочки образующихся ионов заполнены. Заметим, однако, что в действительности полного перехода электрона от одной частицы к другой не происходит, электронные оболочки частиц в ионных кристаллах все же несколько перекрываются, что означает частично ковалентный характер связи. Определяющими являются все же электростатические взаимодействия, благодаря которым ионные кристаллы обладают высокой энергией связи, прочностью, высокой температурой плавления. [c.176]

    Электростатическое притяжение в промежуточном типе 1 должно настолько сильно фиксировать конфигурацию, что вращение относительно связей в данном случае будет блокировано. Поскольку такого рода электростатические связывающие силы должны быть, по-видимому, значительными в начальной стадии активационного процесса, чтобы было гарантировано стереоспецифическое протекание процесса присоединения, речь должна идти о многоцентровой реакции присоединения. Переходное состояние 2 — различные длины двух новых связей указывают на различную их энергию — соответствует, по существу, переходному состоянию, рассмотренному нами ранее для присоединения дихлоркарбена здесь ожидается более значительное разделение зарядов. С учетом энтропийного фактора переходное состояние 2 менее предпочтительно, чем ациклический подвижный цвиттерион 1 однако переходное состояние 2 имело бы значительно большую энергию связи. Если выразить строение переходного состояния 2 в терминах метода валентных связей, то кроме канонических структур исходных и конечных продуктов значительный вклад дадут динолярные структуры, родственные переходной структуре 1 (в виде гиперсоиряженных образований), [c.467]

    А. Капустинский первый показал, что координационное нисло катиона по аниону р структурная константа Ма-делунга а в выражении электростатической кулоновской силы при равновесии ионных кристаллических структур также имеют весьма существенное значение. Эти соотношения получают более простое выражение при введении паулинговской. электростатической доли q, которая определяется как частное от деления, заряда иона г на его координационное число р (прочность электростатической связи). Следовательно, зависимость термического расширения от валентности и координации, по правилу Mero, получит следующее выражение a=Ve on.st. [c.19]

    В этой теории предполагалось, что валентные силы обусловлены электростатическим притяжением разноименно заряженных частиц. Но после того как было открыто % что такой электроотрицательный атом, как хлор, может иногда замещать электроположительный водород без существенных изменений в свойствах вещества, эта теория была оставлена вплоть до сравнительно недавнего времени. Сейчас признают, что хотя она не может объяснить разнообразные явления валентности, все же ее считают приемлемым объяснением связи в ограниченном числе случаев, когда связь образована между сильно электроотрицательным и сильно электроположительным атомами. Квантовая механика добавила сравнительно мало нового к первоначальной простой картине, основанной на классической электростатической теории, которая в этом случае вполне удоЕлетворительна (конечно, квантовая механика может проникнуть в эту проблему гораздо глубже, че.м классическая теория, н, в частности, она может объяснить сильно электроположительный и сильно электроотрицательный характер учас1вуюших в связи атомов). [c.51]

    Ван-дер-ваальсовы силы. Эти силы зависят от электрического взаимодействия жестких диполей, имеющихся в полярных молекулах, и индуцированных диполей, возникающих от взаимодействия зарядов электронов и ядер соседних атомюв, молекул или ионов. От валентных сил они отличаются тем, что оЛ не связаны с переходом электронов от одного партнера к другому и поэтому не обладают характерным для химической связи свойством насыщаемости поле одного диполя может одновременно влиять на поля нескольких соседних диполей. Силы Ван-дер-Ваальса получили свое название потому, что они же вызывают взаимодействие молекул, отклоняющее газы от идеального состояния. Это взаимодействие выражается коэфициентом а уравнения (56) Ван-дер-Ваальса. В 112 было показано, что сжижение газов обязано этому взаимодействию. Трудность сжижения гелия и других благородных газов объясняется очень симметричным строением их атомов, имеющих замкнутую электронную оболочку, исключающую образование диполей, как жестких, так и индуцированных. Однако, так как эти газы все же сжижаются, то отсюда надо заключить о наличии еще и иных источников сил Ван-дер-Ваальса, кроме электростатического взаимодействия диполей. Действительно, Лондон (1930) показал, что существенным слагаемым в ван-дер-ваальсовых силах является квантово-механический эффект притяжения, вызываемого взаимодействием движущихся электронов, природу которого мы не будем здесь рассматривать подробнее. [c.227]


    Кремний имеет постоянное координационное число относительно ионов кислорода, равное четырем, и такую же валентность. В силикатах прочность электростатической связи Si—О равна как раз половине заряда иона 0 , т. е. г/к = 4/4 = 1. Другая половина заряда или, иными словами, другая половина валентных сил идет на связь со вторым ионом кремния. Следовательно, связь иона кислорода с двумя соседними ионами кремния в структурном мостике Si—О—Si энергетически совершенно одинакова. Это и есть условие для возникновения непрерывной вязи , т. е. цепей, сеток и каркасов в структуре. Для окислов такое условие создается, когда координационное число центрального катиона В равно его вал ентности. Так, у кремния = ksi = 4, у бора гв = Кв = 3, у германия гое = кое = 4. Соединения, обладающие мезодесмиче-ской структурой, -характеризуются бесконечно простирающимися в одном, двух или трех измерениях радикалами —анионами (В0 )оо. Дискретные изолированные радикалы в них возникают лишь в определенных частных случаях, а именно в условиях высокой основности, когда O/Si = O/Ge > 4 и О/В > 3. [c.66]

    Для анализа кривых титрования оценим, какую силу анионного поля можно ожидать у ионогенных групп предполагаемых вариантов структуры согласно правилу электростатической валентности Полинга. В SISb, как и в СКК, мостиковый кислород в сурьмянокислородных ионогенных группах [c.72]

    Типичные ионные и атомные связи следует отнести к предельным случаям. В большинстве случаев, однако, в связях участвуют как валентные силы, так и электростатическое нрнтяжеиие. Такие комбинированные связи называются полярными. Например, в связях С—G1 и Н—С1 электронная пара несимметрично распределяется между атомами и растю-лагается ближе к более электроотрицательному атому хлора, у которого ббльшая величина сродства к электрону. Это приводит к несовпадепию центров тяжести полон ительных и отрицательных зарядов в рассматриваемых атомных группах, благодаря чему один из атомов (углерод в I и водород в НС1) приобретает положительный заряд и другой (хлор) отрицательный. Если смеш,ение электронной пары велико благодаря сильному различию сродства к электрону, то сигещопие электрона равносильно его переходу и атомы фактически превращаются в ионы. [c.29]

    Как известно, одним из факторов, препятствующих сцеплению коллэидных частиц друг с другом, является наличие у них одноименных электрических зарядов, между которыми действуют силы электростатического отталкивания. Заряды эти возникают вследствие адсорбции частицами ионов из раствора и могут быть нейтрализованы в результате адсорбции ионов противоположного знака. Вследствие этого процесс коагуляции коллоидных растворов может быть вызван прибавлением какого-либо электролита, противоположно заряженные ионы которого, адсорбируясь на поверхности частиц, нейтрализуют заряд коллоидных частиц и таким образом дают им возможность сцепляться между собой. При этом коагулирующая концентрация электролита (т. е. минимальная концентрация его, требуемая для коагуляции данного коллоидного раствора) увеличивается с уменьшением валентности того иона, заряд которого противоположен заряду коллоидных частиц. Так, в случае золя AS2S2, частицы которого заряжены отрицательно, коагуляция вызывается адсорбцией катионов, причем коагулирующие концентрации А1з+, Ва2+- и К+-ионов относятся как 1 20 1000. [c.105]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Связь воды с глинистыми минералами при межмолекулярных взаимодействиях возникает в результате гидратации обменных катионов, насыщающих свободные валентности в местах сколов на поверхности кристаллов при изоморфных замещениях, Нескомпен-сированность электростатических сил в сколах кристаллов зависит от места сечений, по которым происходит разрушение рсп1етки. Иногда разрушение решетки может привести к нарушению связей, которые обусловливают гидратацию глинистых минералов не только через обменный катион, но и непосредственно через поляризующее действие электростатических сил. [c.58]

    Предполагается, гго адсорбционные силы, удерживающие хюлекулы ингибитора на поверхности металла, по своей природе могут быть физическими (силы электростатического сцепления, так называемые- Ван-дер-Ваальса) или химическими (валентной связью, образованной за счет пар свободных электронов, имеющихся в атомах азота, серы, кислорода, входящих в состав функциональной Пзуппы ингибитора). Первая связь является менее прочной и характеризуется малыми теплотами адсорбции. Пленка ингибитора, образованная за счет физической адсорбции, служит лишь барьером межд) металлом и афессивной средой и может быть легко удалена с [c.114]

    Вследствие аддитивности дисперсионных сил энергия взаимодействия между макроскопическими телами убывает с расстоянием значительно медленнее, чем между отдельными молекулами. Так, для плоскопараллельных пластин при расстояниях К > 100 нм с учетом запаздьшающих сил энергия взаимодействия пропорциональна При К в несколько десятков нм система переходит в область незапаздывающих сил при К < 1 нм энергия взаимодействия пропорциональна [185... 187]. Когда К соизмерим с межатомными расстояниями, возникает необходимость учета электростатических взаимодействий между полярными элементами структуры твердого тела. При соприкосновении и перекрывании электронных орбиталей поверхностных атомов сближающихся частиц становится заметным вклад близкодействующих сил и в тем большей степени, чем меньше К, что сопровождается или броуновским отталкиванием, или образованием валентных связей. Таким образом, при достаточно больших К между макроскопическими телами действуют практически одни дисперсионные силы, а по [c.98]

    Для вычисления электростатического потенциала щ иона к-го сорта относительно окружающей его ионной атмосферы Дебай и Хюккель ввели два приближения, позволяющие применить уравнение Пуассона, что существенно упрощает задачу. Первое приближение заключается в замене точечных зарядов ионов непрерывно распределенным зарядом переменной плотности. Второе — в предположении действия кулоновского поля, сог.пасно которому два точечных заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния. Рассмотрим 1 см раствора, содержащий Л/ь Л/г,. .., Л/ - ионов каждого сорта с валентностями 21, 22,. . ., 2j. [c.391]

    Другое существенное ограничение накладывает третье допущение. Работа Wi кроме электростатической включает также и другие виды работы, которые теорией не учитываются. Так, не учитываются силы специфической адсорбции, работа вытеснения растворителя из области с большой напряженностью поля и малой диэлектрической проницаемостью в область с малой напряженностью и большой диэлектрической проницаемостью, т. е. в объем раствора. Не учитывается также взаимодействие ионов с другими ионами в двойном слое, связанное со стерическими факторами, которые могут возникать в двойном слое. Так, например, при е=0,2 Кл/м и с=0,3 моль/л среднее расстояние между ионами 1,1-валентного электролита в двойном слое составляет около 0,9 нм, т. е. сравнимо с размерами сольва-тированных ионов. Наконец, не учитывается частичное разрушение сольватной оболочки при больших избытках ионов вблизи электрода. Это показывает, что теория Гуи — Чапмена должна быть в первую очередь справедлива в разбавленных растворах. Из уравнений (22.3) и (22.4) следует [c.106]

    Форма электрокапиллярных кривых зависит от концентрации и состава раствора. На рис. VII.8 представлены электрокапиллярные кривые ртутного электрода в водных растворах фторида натрия различной концентрации. В максимуме, где 7=0, эти кривые практически совпадают. Поэтому согласно уравнению (УП.22) в этой точке Г++Г =0. Но поскольку при д=0 в растворе 1,1-валентного электролита Г+ = Г , то, следовательно, при потенциале нулевого заряда в растворе NaF Г+=Г =0. Таким образом, потенциал нулевого заряда в этой системе, равный —0,193 В (по н.в.э.), может служить точкой отсчета в приведенной шкале потенциалов фо. С ростом концентрации NaF наклон восходящего и нисходящего участков сг, Е-кривой становится более крутым. Если предположить, что адсорбция ионов Na+ и F обусловлена только электростатическими силами, то исходя из основного уравнения электрокаииллярности (VH.l9) можно ожидать сдвига ветвей а,Е-кр1Ивой, равного при значительном удалении от приблизительно 59 мВ для изменения концентрации NaF в 10 раз. Согласие экспериментальных данных с таким выводом можно рассматривать как подтверждение электростатической природы адсорбции ионов Na+ и Р . [c.175]


Смотреть страницы где упоминается термин Электростатические валентные силы: [c.112]    [c.112]    [c.235]    [c.14]    [c.14]    [c.145]    [c.169]    [c.8]    [c.158]   
Смотреть главы в:

Теоретические основы неорганической химии -> Электростатические валентные силы




ПОИСК





Смотрите так же термины и статьи:

Валентность электростатическая

Валентные силы



© 2025 chem21.info Реклама на сайте