Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ТЕХНОЛОГИЯ СЕРНОЙ И АЗОТНОЙ КИСЛОТ

    В книге изложены основы технологии серной, азотной и фосфорной кислот и даны краткие сведения об исходном сырье для производства минеральных удобрений — фосфоритах, апатите, калийных минералах и др. Описаны методы производства азотных удобрений, при этом наибольшее внимание уделено аммиачной селитре и карбамиду. Рассмотрены основы химической переработки фосфатного сырья в суперфосфаты и в комплексные удобрения (фосфаты аммония, нитроаммофоску, нитрофоску и др.). Кратко освещена технология производства хлорида, сульфата калия и других калийных удобрении. Приведены технологические расчеты производств. В сжатом виде рассмотрены вопросы производства и применения микроудобрений. [c.2]


    С начала XX в. началось интенсивное развитие промышленной химии. Разработки процессов проводятся с использованием материальных и тепловых балансов, термодинамических расчетов. Создаются новые промышленные процессы производство серной кислоты из колчедана (1903 г., Тентелевский завод), производство азотной кислоты через окисление аммиака (1915—1917 гг, инж. И.И. Андреев, г Донецк), производство синтетического каучука по способу С.В. Лебедева (1932 г). Химики В.И. Ипатьев и Н.Д. Зелинский заложили научные основы каталитических превращений высококипящих углеводородов — процессов вторичной переработки нефти. Разработка этих процессов фактически определила их технологию на все столетие. [c.12]

    В котлах-утилизаторах газы существенно охлаждаются, например промежуточные продукты получения аммиака — от 900-1500 до 180°С, сернистый газ в производстве серной кислоты — от 850-950 до 400-450°С, нитрозные газы в технологии азотной кислоты — от 800-850 до 160-170°С и т.д. [c.418]

    Мощный импульс развитию химической промышленности был дан в 1920-1932 гг Создана отрасль минеральных удобрений (включая производство серной, азотной кислот и аммиака), построены крупные заводы по выпуску химических волокон, синтетического каучука, строительных и оборонных материалов, пластмасс и синтетических смол. Следующий период интенсивной химизации народного хозяйства нашей страны был предпринят в 1959-1970 гг Были задействованы огромные мощности в производстве сложных и комплексных удобрений, нефтехимии, производствах целлюлозы, цемента. Значительный вклад в развитие химической технологии и создании химической промышленности внесли видные ученые нашей страны Г.С. Петров, [c.14]

    Действующие технологии очистки газов от указанных выше примесей по своей материалоемкости в десятки раз превышают материалоемкость аппаратов основной технологии. Например, масса только одного каскада электрофильтров для улавливания тумана серной кислоты на одном заводе колеблется в пределах 5-14 тыс. т, масса каскада насадочных и тарельчатых колонн для улавливания азотной кислоты и оксидов азота — в пределах 1.5-8.0 тыс. т. Низкая эффективность действующих систем и дефицит в стране надежных кислотостойких материалов для изготовления промышленных аппаратов сделали задачу очистки кислотных газовых выбросов сложной научно-технической проблемой. [c.327]


    Знакомясь с производством таких важных продуктов, как серная кислота, аммиак, азотная кислота, минеральные удобрения, чугун, сталь, алюминий, вы встретились с рядом основных закономерностей химической технологии. Теперь, сопоставив эти производства, нетрудно сформулировать их в более общем виде. [c.187]

    Гелеобразующие композиции могут быть получены и при взаимодействии нефелина с другими сильными минеральными кислотами (серная, азотная и др.). Для выбора оптимальных технологий применения различных гелеобразующих композиций на основе нефелина в различных геолого-физических и технологических условиях при проведении промысловых экспериментов необходимо решить следующие задачи  [c.271]

    Что касается хинолина, то при наличии ряда прогрессивных методов окисления (парофазный окислительный аммонолиз, озонолиз, электрохимическое окисление) ни один из них не разработан на уровне полузаводских установок. С положительными результатами проверен в полузаводских условиях периодический процесс окисления хинолина азотной кислотой в присутствии серной кислоты с участием катализатора пятиокиси ванадия при атмосферном давлении. Ниже описана технология производства никотиновой кислоты по методам наиболее изученным и опубликованным. [c.199]

    Все технологические схемы, реализованные в настоящее время отечественной промышленностью, основаны на получении гидроокиси алюминия требуемого химического и фазового состава путем переосаждения из окиси алюминия ( гидрата глинозема ). Схема такого процесса включает растворение гидрата глинозема в кислотах (серной, азотной) или в щелочи (едком натре) с последующим гидролизом при нейтрализации соответственно основанием или кислотой. Процесс переосаждения гидроокиси алюминия связан с большими затратами кислот или оснований (2—4 т/т окиси алюминия), которые практически не регенерируются. Исключение составляет нитратная технология (растворение гидрата глинозема в азотной кислоте и нейтрализация аммиаком), которая в случае привязки к заводу, имеющему комплекс производства аммиачной селитры, позволяет практически полностью использовать затраченные реагенты. [c.103]

    В настоящее время большая часть технологий химической промышленности — каталитические процессы. К ним относятся процессы переработки нефти, получения аммиака, азотной кислоты, производства серной кислоты и метанола, переработки непредельных углеводородов и др. Подавляющее большинство этих процессов — гетерогенно-каталитические. [c.173]

    Факультативный курс Химия в промьппленности имеет четко выраженную технологическую направленность. Его цель — обеспечить овладение учащимися закономерностями оптимизации производственных процессов, необходимыми для ориентирования в химической технологии. В курсе раскрываются понятия о химической технологии как науке, технологии неорганических веществ (производство серной кислоты, аммиака, азотной кислоты, азотных удобрений, фосфора и его соединений, калийных солей и комплексных удобрений), технологии органических веществ (переработка метана, производство этилена, пропилена, бутадиена, изопрена и ароматических углеводородов, синтез метанола и этанола, окислительная переработка органических соединений — производство формальдегида, ацетальдегида и уксусной кислоты). [c.196]

    Третье издание (2-е изд. — 1979 г.) существенно переработано с учетом современного уровня развития технологии катализаторов. Описаны новые катализаторы, позволяющие интенсифицировать технологические процессы, в том числе производства серной и азотной кислот, метанола и др. Приведены сведения о катализаторах, используемых в процессах очистки газо ых выбросов, для решения различных экологических проблем. Рассмотрено новое высокопроизводительное оборудование для производства катализаторов. [c.2]

    Б книге приведены технологические расчеты основных процессов производства неорганических веществ серной кислоты, синтетического аммиака и азотной кислоты, фосфорной кислоты, минеральных удобрений, солей минеральных кислот, соды и щелочных продуктов. Во 2-м издании (1-е изд. — 1966 г.) отражены новейшие достижения отечественной и зарубежной технологии. [c.2]

    Поэтому основное содержание настоящего пособия — материальные и тепловые расчеты (балансы) производственных процессов или их отдельных элементов, а также расчеты некоторых производственных аппаратов, не относящихся к типовой химической аппаратуре. Расчеты составлены в соответствии с действующей программой курса технологии неорганических веществ и охватывают основные разделы этого курса (серная кислота, синтез аммиака и азотная кислота, фосфорная кислота, минеральные удобрения, кальцинированная и каустическая сода). [c.3]


    Абсорбционные и хемосорбционные процессы весьма распространены и применяются в производстве серной, соляной, азотной, фосфорной кислот, аммиака, кальцинированной соды, при переработке коксового газа и газов нефтепереработки, при очистке промышленных газов (коксового, нефтяного, генераторного и др.), в технологии основного органического синтеза (разделение газообразных углеводородов, получение формальдегида, дивинила, получение ацетилена из метана и т. д.), в производстве целлюлозы, при концентрировании газов и т. д. Хемосорбция является важным этапом ряда синтезов в жидкой фазе, например прямой синтез азотной кислоты происходит путем хемосорбции кислорода раствором четырехокиси азота в азотной кислоте под давлением процессы оксосинтеза основаны на хемосорбции водорода и окиси углерода жидкими олефинами с образованием альдегидов и кетонов. [c.114]

    Основной органический синтез, дающий полупродукты (и продукты органической технологии) базируется в основном на каталитических реакциях [28—36]. Большое значение в жизни современного общества имеют такие продукты химической промышленности как серная кислота, аммиак и азотная кислота. Почти все отрасли народного хозяйства потребляют эти вещестйа или же другие химические соединения, полученные с их помощью. На их основе производят десятки миллионов тонн минеральных удобрений, без которых невозможно повышение или даже сохранение урожайности полей. Сотни производств химической, нефтехимической, пищевой, легкой и других отраслей промышленности используют серную, азотную кислоты, аммиак и их производные. Применяют указанные соединения также в металлургической и металлообрабатывающей промышленности. [c.10]

    Катализ Применяется при получении важнейших неорганических продуктов основной химической промышленности — водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в органической технологии, [c.164]

    Катализ, избирательно ускоряющий химические реакции, играет большую роль в химии, химической промышленности и биохимии. Катализ является тонким методом синтеза, позволяющим изменять одни части молекул, не затрагивая других, поэтому он широко применяется в лабораториях. Около 80% тяжелой химической промышленности основано на катализе. В неорганической технологии сюда относятся производство серной кислоты, аммиака, азотной кислоты в органической технологии — каталитический крекинг, производство синтетического каучука, многих видов пластмасс и искусственных смол, метанола и ряда других растворителей, этилового спирта (как из этилена, так и из древесины), синтетического бензина, различных специальных видов моторного топлива л многие другие процессы химической и нефтехимической промышленности. В живом организме почти все реакции являются, ферментативными, т. е. каталитическими. [c.5]

    Основные работы посвящены алхимии и химической технологии. Приготовил ряд солей, предназначенных для использования в качестве лекарственных препаратов. Впервые описал (1649) сырой бензол, полученный разгонкой каменноугольной смолы. Перегонкой смеси селитры с серной кислотой получил чистую азотную кислоту, а нагреванием смеси поваренной соли с серной кислотой — чистую соляную кислоту и сульфат натрия (1648 глауберова соль). Одним из первых применил стекло для изготовления химической посуды. Основал промышленное стекловарение в Тюрингии. Получил жидкое стекло (метасиликат калия или натрия). Впервые описал (1648) получение уксусной кислоты сухой перегонкой растительных веществ. [22, 149, 279, 324, 330, 336,340,341] [c.143]

    Большая часть органических реакций протекает без катализатора при биологических температурах чрезвычайно медленно. Поэтому жизнь без ферментов была бы невозможна. При старой технике органической химии с применением несколько повышенной температуры и сильно действующих неорганических реактивов (концентрированная серная кислота, азотная кислота, натриевая щелочь и т. д.) можно было работать и без катализаторов, в частности в области химии ароматических соединений. Однако существуют определенные температурные границы, за пределами которых органические вещества небезразлично относятся к действию температуры. В этом одна из причин, почему катализ находит все большее применение в органической химии. Лишь благодаря ему была разработана химическая технология алифатических соединений. [c.9]

    В технике и промышленности кислород применяется для интенсификации различных технологических процессов (доменное и сталеплавильное производство, получение серной и азотной кислот). Кислород обеспечивает получение высоких температур сгорания различных газов, что находит широкое применение в высокотемпературной технологии (газовая сварка, резка). [c.340]

    Прочие вопросы технологии. Обезжиривание урана с поверхности наилучшим образом осуществляется паром с трихлорэтиленом при 82— 85 °С в течение 60—90 с. Для травления поверхности как правило применяют 50 %-ную азотную кислоту или смесь ортофосфорной и азотной кислот, для электрополировки — серную кислоту с оксидом хрома. Покрытия на уран наносят электролитическим или химическим способом, а также методом погружения, путем заливки в изложницы, облицованные изнутри металлом покрытия. [c.621]

    Последняя сфера приложения метода заслуживает несколько более подробного рассмотрения. Известно, что для экстракции в целом очень многое дало ее применение в атомной промышленности. Однако атомная промышленность — по чистой случай пости — имеет дело прежде всего с элементами, у которых лучше всего экстрагируются нитратные комплексы (уран, плутоний, торий). Азотная кислота более или менее устраивала технологов, специалистов по процессам и аппаратам, хотя она значительно уступает серной по стоимости. В цветной металлургии картина неизбежно будет несколько иной. Здесь гораздо шире ассортимент металлов, подлежащих извлечению, и свойства их много- [c.11]

    Специальные кафедры технологических и политехнических вузов решают ряд крупных задач, связанных с разработкой новых технологических процессов и коренным совершенствованием существующих методов производства важнейших химических продуктов. В первую очередь в связи с этим следует указать на работы по катализу, особенно неорганическому, по технологии получения азотной и серной кислот, аммиака [Харьковский политехнический институт им. В. И. Ленина (ХПИ), МХТ И им. Д. И. Менделеева, ЛТИ им. Ленсовета и др.]. [c.336]

    Полностью безотходных технологических процессов пока еще мало. Однако многие отходы можно использовать в других производствах вместо природного сырья. По расчетам, при современном уровне производства и стабильной технологии в нашей стране ежегодно получается в виде отходов 3 млн. т сульфата натрия (из которого можно изготовлять сернистый натрий), 50 млн. т отходов поваренной соли (в два раза больше потребности всей страны в этом продукте), 1 млн. т отработанной серной кислоты (с примесями азотной кислоты, минеральных веществ, органических соединений), 700 ООО т соляной кислоты и много других отходов. Однако доведение их качества до нужного для производства требует больших капитальных вложений и эксплуатационных затрат — отходы нужно собирать, транспортировать, хранить, облагораживать. Поэтому принципиальным направлением борьбы с отходами остается все-таки создание технологии безотходного производства. [c.37]

    Разработана комплексная технология очистки отходящих газов производства нитратов целлюлозы и нитроэфиров от азотной и серной (туман) кислот, диоксида серы и оксидов азота. Процесс очистки основан на совмещении гетерогенных кибернетически подобных процессов в вихревых аппаратах. [c.327]

    Был создателем многих химических производств (неорганических пигментов, глазурей, стекла, фарфора). Разработал технологию и рецептуру цветных стекол, которые он употреблял для создания мозаичных картин. Изобрел фарфоровую массу. Занимался анализом руд, солей и других продуктов. В труде Первые основания металлургии, или рудных дел (1763) рассмотрел свойства различных металлов, дал их классификацию и описал способы получения. Наряду с другими работами по химии труд этот заложил основы русского химического языка. Рассмотрел вопросы образования в природе различных минералов и нерудных тел. Высказал идею биогенного происхождения гумуса почвы. Доказывал органическое происхождение нефтей, каменного у1ля, торфа и янтаря. Описал процессы получения железного купороса, меди из медного купороса, серы из серных руд, квасцов, серной, азотной и соляной кислот. [c.308]

    В эту книгу включены расчеты но всем разделам курса технологии неорганических веществ (серная кислота, синтез аммиака и азотная кислота, минеральные удобрения, соли, кальцинированная и каустическая сода). Расчеты составлены в соответствии с действующей программой курса технологии неорганических веществ. Основой приводимых примеров послужили проектные и производственные материалы Гипрохима, Ленниигипрохима, ГИАП, Ново-московского, Винницкого, Воскресенского и Актюбинского химических комбинатов. Невского химического завода и др. С любезного разрешения авторов с частичной переработкой использованы также некоторые расчеты, помещенные в следующих учебных пособиях А. Г. Амелин, Технология серной килосты . Изд. Химия , 1964  [c.4]

    Развитие комбинирования в химической промышленности обусловлено, во-первых, наличием большого числа процессов, базирующихся на последовательной или комплексной переработке минерального и органического сырья, во-вторых, значител1>ны-ми масштабами производства полупродуктов (синтетического аммиака, ацетилена, метанола, серной, фосфорной и азотной кислот), которые малотранспортабельны и последующая переработка которых целесообразна на месте производства, в-тре1ь-их, большим потреблением предприятиями химической промышленности топливно-энергетических ресурсов, наличием в их составе мощных обслуживающих цехов (разделения воздуха, компрессорных и насосных станций и т. п.) и большого вспомогательного хозяйства (ремонтного, энергетического, транспортно-складского и др.). Комбинированные предприятия отличаются объединением разнородных по технологии производств, технико-экономическим единством входящих в нх состав производств, размещением на единой территории, наличием единой системы коммуникаций и общего вспомогательного хозяйства. [c.117]

    Абсорбционные процессы широко распространены в химической технологии и являются основной технологической стадией ряда важнейших производств (например, абсорбция SO3 в производстве серной кислоты абсорбция НС1 с получением соляной кислоты абсорбция окислов азота водой в производстве азотной кислоты абсорбция NH , паров Hj, HjS и других компонентов из коксового газа абсорбция паров различных углеводородов из газов переработки нефти и т. п.). Кроме того, абсорбционные процессы являются основными процессами при санитарной очистке выпускаемых в атмосферу отходяи их газов от вредных примесей (например, очистка топочных газов от SOj очистка от фтористых соединений газов, выделяющихся в производстве минеральных удобрений, и т. д.). [c.434]

    Каталитические процессы занимают в химической технологии высокотоннажных производств (аммиак, серная и азотная кислоты, переработка нефтепродуктов, нефтяных и природных газов, полимерных материалов и др.) ведущее место. Ряд отдельных каталитических процессов будет рассмотрен в специальной части курса (см. ниже). [c.165]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    Алхимики не только закрепили в сознании человечества термин химия , известный по феческим письменным источникам с середины V в., не только произвели новые продукты, включаюшие серную, азотную, мышьяковистую кислоты, сулему, нашатырь, они дали толчок к развитию новых ветвей науки - химии благородных металлов и фармацевтической химии. Началась эпоха химии как науки, пришло время собирать, описывать, систематизировать и анализировать накопленный опыт. Арабский алхимик Абу-ар-Рази в Книге тайн (X в.) описал различные химические аппараты и процессы кальцинации (обжига), растворения, сгущения, фильтрования, дистилляции, амальгамирования классифицировал вещества на землистые (минеральные), растительные и животные. Пришло время технологии на уровне промыслов и мануфактур. [c.11]

    Все крупнотоннажные процессы химической технологии — окисление SO2 в производстве серной кислоты, синтез аммиака из азота и водорода, окисление для производства азотной кислоты, крекинг нефти и другие — проводят гетерогенно-каталитически, на поверхности металлов и их оксидов. Гетерогенно-каталитическая реакция включает последовательные макростадии  [c.180]

    М. Г. Коган [6] приводит следующие примеры эффективного применения ультразвука для очистки. Прямые и криволинейные трубопроводы из стали 1Х18Н9Т внутренним диаметром 4—16 мм н толщиной стенки 1—2 мм прежде подвергались пескоструйной обработке, ухудшавшей коррозионную стойкость стали и вызывавшей уменьшение толщины стенок труб. По новой технологии обезжиренные трубы травят в растворе, содержащем 10% азотной кислоты, 10% серной кислоты и 50 г/л фтористого калия, затем промывают в воде под действием ультразвукового поля в ванне, [c.39]

    Для 60-х годов характерно развитие процессов гидроочистки, гидрокрекинга, что стимулирует развитие производства дешевого водорода, необходимого также для полз ения аммиака, мочевины, азотной кислоты и азотных удобрений. При гидрокаталитических процессах получается большое количество сероводорода, из которого производится дешевая серная кислота. В этот же период осваиваются процессы гидродеметилирования, что существенно расширяет ресурсы бензола и нафталина. В середине 60-х годов развивается биохимическая переработка парафинов, что, несомненно, повлияет на технологию переработки средних фракций нефти (дизельных и реактивных топлив) и приведет к созданию промышленности синтетических белков для пищевой прамьшгленности и сельского хозяйства. [c.15]

    Такие объяснения были слишком общими и поэтому они не могли быть применены для рассмотрения конкретных реакций, интересовавших в то время химиков-прак-тиков. Именно поэтому они и приступили к исследованию наиболее часто встречавшихся в тогдашней химической практике превращений — реакций замещения. Так, знаменитый немецкий химик и технолог Иоганн Глаубер (1604—16ЬЬ) в 1656 г. установил, что серная кислота вытесняет азотную и соляную из их соединений и что кислоты по-разному растворяют металлы. По его наблюдениям азотная кислота растворяет металлы в следующей последовательности серебро, ртуть, медь, железо, олово, свинец. В этом. Глаубер видел проявление различного химического сродства кислоты к металлам. [c.97]

    Фосфаты. Фосфаты являются одной из наиболее распространенных форм нахождения РЗЭ и тория в природе (монацит — см. ниже). Лабораторным путем получены фосфаты РЗЭ и тория, соответствующие всем формам — гипо-, мета-, орто- и пирофосфаты. Все они, как правило, нерастворимы в воде и разбавленных минеральных кислотах. Многие из этих солей используются в анализе и технологии РЗЭ и тория. Особый интерес представляет пирофосфат скандия, практически нерастворимый в соляной и серной кислотах (отчасти растворимый в азотной кислоте). Образование пирофосфата скандия и его состав были тщательно изучены чешскими химиками [68], установившими, что пирофосфат скандия имеет состав 804( 207)3, а не ЗсНРгОу ЗН2О, как считали другие исследователи и, в частности, Бек [682]. [c.260]

    Для работы упомянутого выше каскада были получены следующие величины потребления материалов и энергии, необходимые для получения одного грамм-атома тяжёлого изотопа вода в нижний УОП — 176 кг, диоксид серы (ЗОг) — 600 кг, азотная кислота (десятимолярная) — 1024 кг, охлаждающая вода — 40 м , электроэнергия — 60 кВт/час. Производство сопровождается получением 639 кг серной кислоты и около 280 кг оксидов азота [6, 7. Приведённые результаты подчёркивают основной недостаток рабочей системы, заключающийся в большом расходе 502- Возрастающая потребность в тяжёлом изотопе азота (по оценкам эта потребность может составить свыше ста килограммов в год) требует создания новых технологий и существенной модернизации существующих способов производства. [c.255]


Библиография для ТЕХНОЛОГИЯ СЕРНОЙ И АЗОТНОЙ КИСЛОТ: [c.4]    [c.356]   
Смотреть страницы где упоминается термин ТЕХНОЛОГИЯ СЕРНОЙ И АЗОТНОЙ КИСЛОТ: [c.4]    [c.206]    [c.154]    [c.276]    [c.272]    [c.319]    [c.607]   
Смотреть главы в:

Технология минеральных удобрений и кислот -> ТЕХНОЛОГИЯ СЕРНОЙ И АЗОТНОЙ КИСЛОТ




ПОИСК





Смотрите так же термины и статьи:

Технология азотной кислоты



© 2025 chem21.info Реклама на сайте