Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние молекулярной массы полимера на температуру стеклования

Рис. 6.7. Влияние молекулярной массы М на температуру стеклования полимера Гст Рис. 6.7. <a href="/info/385175">Влияние молекулярной массы</a> М на <a href="/info/4977">температуру стеклования</a> полимера Гст

    Влияние молекулярной массы на температуру текучести полимеров впервые было изучено Каргиным и Соголовой [17]. Термомеханические кривые полимеров одного полимергомологического ряда схематически представлены на рис. 6.10. Из рисунка видно, что низкомолекулярные полимергомологи могут находиться только в двух состояниях — стеклообразном и жидком, причем их температуры стеклования и текучести совпадают. Переход из стеклообразного состояния в жидкое сопровождается резким возрастанием деформации. По мере увеличения молекулярной массы кривая смещается в сторону более высоких температур, т. е. температура стеклования полимера повышается. При некотором значении молекулярной массы температура перехода расщепляется на Т и Гт — на кривой появляются три участка. С дальнейшим увеличе- [c.172]

    Влияние молекулярной массы на прочность полимеров. Зависимость прочности полимеров от молекулярной массы не однозначна. Так, с увеличением молекулярной массы возрастают гибкость полимеров и температуры стеклования, расширяется область высокоэластического состояния и т. д. Однако температура стеклования увеличивается до степени полимеризации, равной приблизительно 200, а прочность до степени полимеризации 600. Если молекулярная масса полимера превышает 50 ООО, то прочность его практически не зависит от того, находится ли полимер в стеклообразном или высокоэластическом состоянии, а определяется тем, что механизмы разрушения полимеров с высоким и низким значением молекулярной массы различны. При разрушении низкомолекулярных образцов возможно взаимное скольжение отдельных относительно небольших молекул, завершающееся разрывом образца. Полимеры с высоким значением молекулярной массы разрушаются за счет разрыва химических связей. [c.232]

    Температуры перехода полимеров зависят от строения полимера, молекулярной массы (см. ниже рис. 6.2, б), молекулярной неоднородности и гибкости цепей. Соединения со сравнительно низкой молекулярной массой (олигомеры) практически не имеют высокоэластического состояния. Такие соединения могут существовать в капельно-жидком состоянии (например, новолачные фенолоформальдегидные олигомеры). Чем ниже молекулярная масса, тем ниже температуры текучести Ту и стеклования и становится более узким интервал высокоэластического состояния. С увеличением молекулярной массы этот интервал расширяется вследствие большего влияния молекулярной массы на Ту, чем на Т . При сравнительно высокой молекулярной массе полимера перестает от нее зависеть, так как эта температура определяется главным образом длиной статистических сегментов, а не макромолекул в целом. При достаточно высокой молекулярной массе может начаться деструкция полимера до начала вязкого течения. У таких полимеров вязкотекучее состояние отсутствует. [c.151]


    Известно, что температура стеклования долвмера резко возрастает с повышением его степени полимеризации, а затем, достигнув определенного значения при сравнительно небольшой молекулярной массе, остается практически постоянной [152] так, изопрен, по нашим данным, стеклуется при —185 С, а цис-1,4-полиизопрен при —70 °С. Чтобы оценить границы использования полученных из опыта значений температуры стеклования полимеров в качестве характеристики их молекулярной структуры, необходимо прежде всего учесть возможное влияние молекулярной массы полимера на его температуру стеклования. [c.31]

    ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ НА ТЕМПЕРАТУРУ СТЕКЛОВАНИЯ ПОЛИМЕРА [c.31]

    ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ МАССЫ ПОЛИМЕРА НА ТЕМПЕРАТУРУ СТЕКЛОВАНИЯ [22—24] [c.170]

    Размягчение лигнина, как и у всех полимеров, происходит в определенном интервале температур. Температуры размягчения (температуры стеклования) лигнинов в зависимости от древесной породы и метода выделения колеблются в пределах от 130 до 190°С для сухих образцов со структурой, близкой к природному лигнину, т.е. не подвергнутых окислению, сульфированию и т.п. На эту величину оказывает сильное влияние молекулярная масса препаратов лигнина. У еловых диоксанлигнинов температура размягчения снижается со 176°С при = 85000 до 127°С при [c.422]

    Кроме сравнительно небольшого числа работ, в которых предложены количественные соотношения между структурой и свойствами эпоксидных полимеров, в литературе имеется огромное количество данных о качественном влиянии тех или иных изменений в химическом строении на различные характеристики эпоксидных полимеров [30—38]. Так, существует много данных о влиянии молекулярной массы эпоксидного олигомера на Тс полимера [34—36], причем последняя обычно повышается с уменьшением Мс. Беккер [30] указывает па линейную зависимость температур стеклования от Пс в процессе отверждения, что дает возможность контролировать технологические процессы. Между многими свойствами, наиример Тс — Е, 7 с —ТКИ, Е — С и др. наблюдается линейная корреляция, пример которой приведен на рис. 3.1. Это связано с тем, что все указанные х.э-рактеристики зависят от одних и тех же структурных параметров и обусловленного ими межмолекулярного взаимодействия, в частности от Мс (рис. 3.2). [c.57]

    Рассмотрим теперь влияние молекулярной массы, на релаксационные свойства наполненного полимера. Повышение температуры стеклования на поверхности твердых частиц для низко- и высокомолекулярного полиметилметакрилата практически одинаково. Оценка плотности упаковки образцов высоко- и низкомолекулярного полиметилметакрилата в присутствии наполнителя показала, что наблюдаемое в обоих случаях увеличение сорбции в поверхностных слоях также примерно одинаково. Это показывает, что изменение свойств полимера вблизи поверхности частиц наполнителя по сравнению со свойствами в объеме определяется главным образом наличием границы раздела и мало зависит от молекулярной массы. [c.107]

    Формула (2.92) показывает соотношение между различными факторами, определяющими значение вязкости данного полимера при выбранных условиях измерений вязкость зависит от разности температур эксперимента и стеклования, длины молекулярной цепи, выраженной в виде числа эквивалентных сегментов (где длина сегмента отвечает значению критической молекулярной массы) и уровня действующих напряжений. С помощью этой формулы можно учесть и зависимость вязкости от гидростатического давления, для чего достаточно рассмотреть влияние этого фактора на температуру стеклования Тд, входящую в (2.92) как параметр гомологического ряда. [c.235]

    Благодаря высокой температуре стеклования блоков поли-а-метилстирола термоэластопласты на основе а-метилстирола выгодно отличаются от термоэластопластов на основе стирола более широким температурным интервалом, в котором сохраняются прочность и эластические свойства материала, при этом с увеличением содержания а-метилстирола температуростойкость полимера повышается. По-видимому, это объясняется уменьшением влияния эластичной фазы на текучесть термоэластопласта в связи с понижением ее доли в полимере, а также повышением молекулярной массы поли-а-метилстирольных блоков. [c.289]

    На температуру стеклования 01 азывает большое влияние молекулярная масса, с увеличением которой Гс возрастает до определенного предела. Величина максимальной температуры стеклования быстрее достигается гибкими полимерами, чем жесткими. Так, например, у гибкоцепных каучуков максимальное значение температуры стеклования Tq° достигается при молекулярной массе около igg-1000, а у жесткоцепных типа полистирола при молекулярной массе выше 15 000 (рис. д. [c.79]

    Специфика распределения межмолекулярных сил и молекулярная масса полимера оказывают заметное влияние на уровень локального накопления механической энергии на химических связях. Роль этих факторов может затушевать различия в прочности связей основной цепи. Силы межмолекулярного взаимодействия определяют когезионную прочность материала, которая в свою очередь влияет на значения температур стеклования и плавления и в значительной степени — на стабильность макромолекул при нагреве и сдвиге. Величина и эффективность вторичных сил взаимодействия зависят от средней длины цепи, полярности, симметрии и ориентации макромолекул. Эти силы являются следствием притяжения диполей одного или разных знаков (до 33,5 кДж/моль), взаимодействия постоянных и индуцированных диполей (индукционный эффект достигает 2,1 кДж/моль), временных перемещений ядер и электронов при вибрации, которые вызывают возникновение сил притяжения (дисперсионный эффект порядка 8,4— 25,2 кДж/моль). И, наконец, следует учитывать водородные связи, создающие усилия притяжения атомов водорода к атомам фтора, кислорода или азота до 42 кДж/моль [114, 236]. [c.99]


    Выражение (4.17, а) означает, что относительное снижение Тс полимера при пластификации не зависит от типа полимера, химической природы, молекулярной массы и других свойств пластификатора. Однако трудно судить, насколько в действительности эта зависимость является общей. Необходимо учитывать то обстоятельство, что на изменение температуры стеклования полимеров оказывают влияние не только пластификаторы, но и стабилизаторы, являющиеся составной частью полимерной композиции. При содержании в составе ПВХ композиции до 3% (масс.) [0,78% (об.) неорганических стабилизаторов Гс ПВХ почти не изменяется, а при дальнейшем повышении концентрации стабилизаторов Гс возрастает [118] (рис. 4.8,а). Введение до 1% эпоксидных стабилизаторов (рис. 4.8,6) понижает Го на значение, характерное для каждого из них, после чего Гс остается практически постоянной до содержания стабилизаторов около 6%. Наиболее резко (на 21 °С) понижается Гс при введении 1% эпоксидированного соевого масла с содержанием эпоксидного кислорода 4,48% (ЭСМ-4,48). [c.157]

    Влияние молекулярной массы полимера на температуру хрупкости становится понятным из рассмотрения рис. 7.9. Наклон кривой Ов — (Т) в области высоких значений молекулярных масс (М) практически от М не зависит. Но молекулярная масса влияет на температуру стеклования полимера (7 с) и хрупкую прочность (сгхр). Температура стеклования с увеличением М полимера повышается до степени полимеризации примерно равной 200 (см. рис. 6.8), а хрупкая прочность — до степени полимеризации, примерно равной 600 (см. рис. 7.1). Следовательно, при увеличении степени полимеризации до 200 (от М1 до М ) возрастают и 7 с, и Охр, в результате чего 7 хр повышается. При дальнейшем увеличе- [c.188]

    Известно много факторов, оказывающих влияние на величину Гст. давление, степень кристалличности, молекулярная масса, разветвленность макромолекулы, степень поперечного сшивания, включение сомономерных звеньев, присутствие остаточного мономера, низкомолекулярной жидкости или пластификатора [3—11]. Почти все волокна состоят из полимерных материалов. Однако кристалличность и молекулярная ориентация полимерного материала в волокне иные, чем в блочном полимере, из которого изготовлено волокно. Поэтому температура стеклования, волокна может значительно отличаться от значения Гст блочного полимера. Увеличение кристалличности обычно приводит к повышению Гст на 5—15 °С, а повышение степени молекулярной ориентации увеличивает Гст на 3—12 °С. Однако оба этих вклада не совсем аддитивны. Например, Гст высококристаллического и ориентированного полиэфирного волокна, изготовленного из полиэтилентерефталата, приблизительно на 15 °С выше, чем у аморфного блочного полимера. [c.480]

    Значительное влияние на свойства полимера оказывает густота сетки. При изменении размера олигомерного блока меняется вклад основных цепей и межузловых блоков в формирование сетки, что позволяет из олигомеров одного гомологического ряда получать полимеры со свойствами, характерными для жестких пластиков и эластомеров. Было установлено, что с увеличением молекулярной массы исходного олигомера пределы прочности полимера при растяжении и изгибе, а также твердость проходят через максимум при использовании олигомеров с числом звеньев п = 2, а затем снижаются, а относительное удлинение при разрыве, удельная ударная вязкость и степень набухания возрастают. Температура стеклования полимеров с увеличением длины блока понижается. [c.89]

    О влиянии молекулярной массы на температуру стеклования линейных полимеров, начиная от мономера и кончая высо-кополимерами, можно судить по данным рис. VIII. 13. Выше некоторой критической молекулярной массы Мкр 10 значение Тст фактически не зависит от среднечисленной молекулярной массы, а в области олигомеров Тст существенно зависит от нее. Объясняется это тем, что низкомолекулярные полиизопрены имеют длину цепочки порядка или меньше длины сегмента, который в полимерах является кинетической единицей а-перехода. Меньшие кинетические единицы имеют большую молекулярную подвижность и поэтому приводят к низким Тст. Кроме того, по- [c.194]

    Широкие исследования динамических свойств полимеров и их растворов, в частности механических потерь эластомеров, проведены Ферри с сотр. [31—35]. Механические потери и влияние молекулярной массы на температуру стеклования изучались в работах Марея с сотр. [361. Там же и в работах [37, 38] приводятся данные по температурам стеклования для широкого круга эластомеров. [c.119]

    Было изучено влияние молекулярной массы линейного поли-сульфидного полимера и природы диола на свойства тиоуретановых эластомеров. Увеличение молекулярной массы полидисульфида приводит к снижению напряжения при удлинении 100%, твердости и температуры стеклования, а эластичность и относительное удлинение при этом повышаются  [c.24]

    Величина М р играет большую роль в поседении полимеров. Так, только при Л1>Мкр проявляются большие обратимые (высокоэластические) деформации, а температура стеклования приобретает постоянное значение. Поэтому из рис. 5.22, с одной стороны,. чы получаем информацию о влиянии А1 на 1о, а с другой, определяя т)о как функцию от М, можно с высокой точностью Определить Мкр. Таким образом, наибольшая ьютоновская вязкость г о является функцией темпе )атуры и молекулярной массы. [c.307]

    Бромирование полиэтилена описано в [128], а направленное фторирование углеводородных полимеров —в [129]. В [130] исследовано влияние растворителя на хлорирование поливинилхлорида. Изучение хлорирования в диметилформамиде при различных температурах показало, что при 25—50°С содержание хлора может достигать 58,2% (мае.). При повышенных температурах наблюдается дегидрохлорирование. Более высокая растворяющая способность диметилформамида обеспечивает более высокое содержание связанного хлора, но высокая основность этого растворителя вызывает интенсивное дегидрохлорирование. В [131] сообщается о распределении хлора при хлорировании поливинилхло-уида различными методами. Протекание этой реакции зависит и от тактичности поливинилхлорида [132, 133] на степень хлорирования влияет содержание синдиотактических структур. Продукты с синдиотактичностью более 56%, в которых чередуются синдио-тактические и изотактические диады, энергично поглощают хлор. В литературе сообщается о хлорировании и сульфохлорировании полиэтилена низкой и высокой плотности [134] и полипропилена [135, 136]. При хлорировании и сульфохлорировании атактического полипропилена [137] в U были получены продукты, содержащие от 3 до 72,3% хлора, и сульфохлорированный полипропилен с содержанием 3—54,4% хлора и 1,2—5,9% серы. Одновременно определено влияние замещения в полимерной цепи на относительную молекулярную массу, характеристическую вязкость и температуру стеклования полимера. Особенно интересны динамические и механические характеристики, изменения которых обусловлены распределением хлора в процессе хлорирования атактического по-липропилена. В случае хлорирования изотактического полипропилена с увеличением содержания хлора снижается доля кристаллических областей. При этом признаков деструкции и сшивания не обнаружено. Галогенирование других линейных полимеров возможно при наличии в их структуре атомов водорода, способных к замещениго (см. также [124]). [c.133]

    Из других вопросов, связанных с диффузией воды в полимерных материалах, следует отметить влияние на скорость трансляционной подвижности молекул воды природы и молеку-лярно-химических характеристик полимеров. Поскольку часть этого материала вошла в предыдущие разделы книги, здесь лишь перечислены некоторые из них. Установлено, что в полимерах, находящихся в условиях эксперимента выше температуры стеклования, скорость уменьшается по мере увеличения их молекулярной хмассы. Экспериментальные данные находятся в согласии с теоретической зависимостью (3.7). Следует обратить особое внимание на диффузионные свойства сред, макромолекулы которых имеют различные по полярности концевые группы. Из общих соображений для этих систем можно ожидать появление ряда неожиданных зависимостей О—Мг, связанных с образованием концевыми группами (в определенных условиях) сетки водородных связей, изменением локального свободного объема /г и, как следствие, не возрастанием, а снижением О в олигомерной области молекулярных масс. [c.238]


Смотреть страницы где упоминается термин Влияние молекулярной массы полимера на температуру стеклования: [c.158]    [c.467]    [c.98]    [c.83]    [c.105]    [c.195]    [c.360]   
Смотреть главы в:

Физико-химия полимеров 1978 -> Влияние молекулярной массы полимера на температуру стеклования




ПОИСК





Смотрите так же термины и статьи:

Влияние молекулярной массы на температуру стеклования полимера Марей

Молекулярная масса

Молекулярная масса и температура

Молекулярная масса полимеров

Молекулярный вес (молекулярная масса))

Полимеры массы

Стеклование полимеров

Стеклование полимеров температура

Температура полимеров

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте