Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклование полимеров

    Процесс стеклования полимеров не всегда сопровождается резким изменением энергии активации диффузии, в частности не обнаружено изменения аргона в полиэтилметакрилате и поливинилхлориде, в то время как для полиметилакрилата и поливинилацетата наблюдалось уменьшение величины аргона примерно на одну треть [12]. [c.87]

    Энергия когезии. С увеличением энергии когезии ослабляется сегментальное движение, соответственно, Тс возрастает. Этот давно установленный факт [2, 9] находит в последнее время все более четкое и убедительное подтверждение, позволяющее заключить, что в первую очередь величина межмолекулярного взаимодействия ответственна за значение температуры стеклования полимеров вообще и эластомеров в частности. [c.44]


    Термодинамическая гибкость цепи и вращение в боковых группах. Существует определенная корреляция между гибкостью изолированной цепи и Тс. Но поскольку одновременно с уменьщением гибкости растет, как правило, и меж-молекулярное взаимодействие, то неясно, влияет ли она в действительности на температуру стеклования полимеров. Увеличение свободы внутреннего вращения в боковых группах понижает Тс, даже если при этом привески становятся все более массивными [2]. [c.44]

    Существенное значение для процессов переработки ПМ имеет также пластификация полимеров. Под пластификацией понимают повышение пластичности полимеров при их переработке и эластичности при эксплуатации. Сущность пластификации состоит в снижении температуры стеклования полимера и расширении интервала АТ = Тт - Тс. Пластификация полимеров может быть достигнута различными методами, в связи с чем различают внутреннюю и внешнюю пластификацию. [c.379]

    Температурная зависимость предела вынужденной эластичности. Температура хрупкости. Температурная зависимость Ов прн постоянной скорости деформирования представлена на рис. V. 19. Прямая Ов = /(Т) пересекается с осью абсцисс в точке, соответствующей температуре стеклования полимера. При температуре [c.157]

    Привлечение понятия свободного объема для описания явлений молекулярной подвижности и стеклования полимеров связано [c.43]

    Tq - температура стеклования полимера. [c.85]

    Для исследования процессов, происходящих при нагревании или охлаждении полимеров, применяются методы линейной и объемной дилатометрии. Выше температуры структурного стеклования полимер обладает жидкой структурой, так как ближний порядок изменяется с температурой, аналогично тому, как это имеет место в простых жидкостях. В твердом состоянии ближний порядок зафиксирован и не меняется с температурой. В области перехода из жидкого состояния в твердое (или наоборот) наблюдается резкое изменение всех теплофизических свойств полимеров. Например, при понижении температуры (при неизменном давлении) в области этого перехода происходит резкое уменьшение коэффициента термического расширения. Если данный переход происходит при понижении температуры, то он называется структурным стеклованием, а в случае повышения температуры — размягчением. [c.262]

    Температура стеклования полимеров зависит также и от напряжения, понижаясь с увеличением напряжения (рис. 210). Это можно объяснить уменьшением энергии активации молекулярных перегруппировок под влиянием напряжения. [c.584]


    Стеклование полимера - агрегатный переход полимера из высокоэластического в стеклообразное состояние, связанный с уменьшением кинетической активности (подвижности) его звеньев, сегментов. [c.405]

    Наконец, изменить температуру стеклования полимера можно при помощи пластификаторов. В присутствии пластификатора увеличивается расстояние между макромолекулами полимера, так как пластификатор проникает между ними и отодвигает цепи друг от друга. Межмолекулярное взаимодействие уменьшается, [c.47]

    СТЕКЛООБРАЗНОЕ СОСТОЯНИЕ И СТЕКЛОВАНИЕ ПОЛИМЕРОВ [c.74]

    Некоторые исследователи считают, что процесс стеклования полимеров и неорганических стекол объясняется главным образом процессами структурирования физической природы, например в результате образования полярных узлов молекулярной сетки при понижении температуры. Вероятнее всего, процесс образования в линейных полимерах физических поперечных связей флуктуационной природы является не главным, а сопутствующим процессом, приводящим к дополнительной. потере сегментальной подвижности при понижении температуры. Например, бутадиен-нитрильные сополимеры содержат в цепи боковые полярные ни-трильные группы СЫ, которые способны образовывать поперечные физические связи между макромолекулами. Замечено, что чем больше концентрация в сополимере нитрильных групп, тем раньше происходит стеклование при охлаждении. Это явление не противоречит релаксационной теории стеклования, которая допускает, что низкомолекулярная жидкость, расплав полимера или эластомер изменяют структуру при понижении температуры. Структура, [c.86]

    Кинетическая теория дает результаты, вполне удовлетворительно согласующиеся с экспериментальными данными изучения структурного стеклования полимеров. В первом приближении каждая кинетическая единица (сегмент) может принимать два энергетических состояния — основное и возбужденное (рис. 2.3)—и характеризоваться одним временем релаксации т (вместо совокупности [c.40]

    По данным этой таблицы строят график зависимости tg б от Т, по которой также определяют температуру стеклования полимеров. [c.163]

    Переход полимеров в стеклообразное состояние происходит при понижении температуры в результате протекания кинетического (релаксационного) процесса — стеклования. Если при этом действие внешних силовых полей отсутствует, то реализуется только процесс структурного стеклования полимеров. [c.58]

    Полезным для исследования медленных релаксационных процессов оказывается и метод термодеполяризации. С его помощью, в частности, можно плодотворно изучать начальные стадии подвижности сегментов макромолекул, проявляющейся в области стеклования полимеров. [c.209]

    Значения Х образцов аморфных полимеров, полученных при относительно высоких давлениях, меньше, чем у образцов, полученных при меньших давлениях. Причина этого состоит в следующем. При относительно небольших внешних давлениях по мере увеличения давления сегментальная подвижность в полимерах хотя и уменьшается, однако сохраняется возможность перегруппировки звеньев макромолекул. В случае более высоких давлений свободный объем уменьшается, подвижность полимерных цепей затрудняется и X увеличивается. Поэтому температура стеклования полимера возрастает и за время эксперимента не успевает установиться равновесный свободный объем образца. Это и обусловливает разницу значений X для образцов, полученных при высоких и низких давлениях, если полимер находится в высокоэластическом состоянии. Наложение еще более высоких давлений уже не будет приводить к дальнейшему уменьшению свободного объема, ибо при этом полимер будет находиться в стеклообразном состоянии и не могут проявляться условия, обеспечивающие заметное изменение его свободного объема. Таким образом, повышение давления способствует уменьшению свободного объема полимера, затрудняет подвижность сегментов макромолекул и увеличивает коэффициент X. [c.259]

    Если скорость нагревания будет больше, чем скорость, с которой образец был охлажден (образцы 4 п 5), то область его размягчения будет располагаться выше области стеклования. При этом в области размягчения образец будет иметь более плотную структуру, чем та, которая при данной температуре являлась равновесной. Релаксация структуры будет приводить к менее плотной упаковке частиц и в области размягчения будет наблюдаться резкое увеличение объема или теплосодержания. Чем больше отличается фиксированная при охлаждении структура образца от равновесной, т. е. чем больше различие скоростей охлаждения и нагревания, тем больше аномальное увеличение объема. В случае процессов размягчения и стеклования полимеров характер дилатометрических кривых можно понять лишь считая систему неравновесной при условии, что она перешла к этому состоянию в результате плавного нагревания или охлаждения. И при положительных, и при отрицательных отклонениях от равновесного состояния время релаксации процессов размягчения и стеклования полимера зависит экспоненциально как от температуры, так и от их объема. [c.265]


    Под теплостойкостью понимают способность полимера сохранять свою механическую прочность при действии той или иной нагрузки при повышенных температурах. Обычно величина теплостойкости определяется температурой плавления или стеклования полимеров. [c.116]

    Вязкость полимеров сильно зависит от температуры. Для обла- сти высоких температур, далеких от температуры стеклования полимера, выполняется экспоненциальная зависимость вязкости от температуры, характеризуемая энергией активации вязкого течения. [c.154]

    По данным таблицы строят графики зависимости О от Т и определяют температуру стеклования полимера. [c.162]

    Если при снятии термомеханической кривой не происходит термодеструкция полимера, то при медленном охлаждении можно воспроизвести термомеханическую кривую образец переходит сначала в высокоэластическое, а затем в стеклообразное состояние (стеклуется). Очень важно то, что при температуре ниже температуры стеклования полимер, как правило, сохраняет некоторый комплекс свойств, присущий только полимерам. Мы говорим, что полимер застекловался, но он не стал хрупким, как обычное силикатное (оконное) стекло. Лист органического стекла (полиметилметакрилат, плексиглас) можно бросить на пол, и он не разобьется вдребезги. И все-таки стеклообразный полимер можно охладить до такой температуры, когда он будет легко разбиваться при ударе. Такая температура носит название температуры хрупкости Тхр-На термомеханической кривой она не проявляется в виде какой-либо характерной точки. Методы определения температуры хрупкости всегда так или иначе связаны с разрушением образца. [c.102]

    Кристаллический полиэтилентерефталат предстанляет собой очень твердое, белое, непрозрачное вещество температура стеклования полимера 81, температура плавления 264", степень кристаллизации 55—75%. Ориентацией полимерных цепей можно повысить степень кристаллизации полиэфира. Ориентацию можно проводить медленным вытягиванием нити и./1и пленки, нагретой выше температуры стеклования. [c.423]

    Задание. Проанализировать характер кривой зависимости модуля кручения от температуры при заданном моменте инерции системы определить температурные области переходов полимеров из одного физического состояния в другое проанализировать полученную зависимость тангенса угла механических потерь от температуры при заданном моменте инерции системы объяснить смещение температур стеклования полимеров при изменении момента инерции системы. [c.163]

    V. 4. Как изменяется температура стеклования полимера, определяемая методом объемной дилатометрии, с увеличением скорости нагревания  [c.213]

    Сопоставление кривых ДТА и ТМ позволяет выяснить природу имеющихся на них пиков и изломов. Так, горизонтальная пло-ща з,ка на ТМК может соответствовать либо высокоэластическому состоянию, либо процессам сшивания, либо процессам кристаллизации. И только сравнивая кривую ТМ с кривой ДТА, можно выявить природу процесса. Кривые ДТА помогают выяснить причину резкого увеличения деформации на участке текучести ТМК, которое может быть вызвано и текучестью аморфного полимера, и плавлением кристаллического полимера. Также может быть более точно определена область стеклования полимера. [c.218]

    Замена алкилакрилата на алкоксиалкилакрилат или алкил-тиоалкилакрилат с равной длиной цепи (например, бутилакрплат на метоксиэтилакрилат) приводит к получению более полярных полимеров. Однако увеличение полярности в этих случаях не выбывает повышения температуры стеклования полимера, так как потенциальный барьер вращения вокруг 8—С- или О—С-сзяз,и, меньше потенциального барьера вращения вокруг С—С-связи [5]. [c.387]

    Низкотемпературные свойства полисульфидных полимеров зависят как от структуры углеводородной части полимера, так и от степени его полисульфидности. Увеличение длины углеводородной части основного звена полимера, введение эфирного кислорода снижает температуру стеклования полимеров, а повышение степени полисульфидности, наоборот, ухудшает их морозостойкость [8, 9]. [c.557]

    В работах Ю. С. Лазуркина было показано, что в интерьале между температурами стеклования и хрупкости (т. е. ниже температуры стеклования) полимеры под действием больших внешних сил могут подвергаться значительным деформациям без разрушения. Такие деформации коренным образом отличаются от обычной пластической деформации, так как исчезают при нагревании разгруженного образца. Это явление получило название вынужденной эластичности. Оно обусловлено высокоэластической деформацией полимера, вызываемой действием больших внешних сйл при температуре ниже температуры стеклования, так как в этих условиях снижается энергия активации молекулярных перегруппировок, [c.587]

    Ниже прив( дены температуры стеклования полимеров различных п-замещенн[,1Х стирола (полимеры получены блочным методом в одинаковых условиях)  [c.365]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]

    В настоящее время в теории релаксационных явлений полимеров каилучшим образом описаны а-процесс релаксации, связанный с сегментальным движением и процессом стеклования полимеров, а также химические процессы релаксации в сшитых эластомерах [76]. Важное значение при этом имеет уравнение Вильямса — Лан-делла — Ферри, которое лучше всего выполняется для полимеров в переходной области (из высокоэластнческого в стеклообразное состояние). [c.125]

    На зависимостях ggo -r= (T ) в области стеклования полимеров чаще всего имеет место переход от криволинейной к прямолинейной форме (рис. 7.17), однако может проявляться и их резкий излом, до и после которого прямолинейные отрезки имеют разные углы наклона. Следует отметить, что характер температурной зависимости go T как для аморфных, так и для кристаллических полимеров практически одинаков. Для полимеров разного строения значения Гс и излома (также связанного с резким изменением моле- [c.201]

    На примере полиизобутилена (ПИБ) [(СНз)2— HjJn рассмотрим порядок вычисления <ДЯ2 >. Если принять нормальные расстояния для С—Н-связи (0,109 нм) и тетраэдрические валентные углы, то расстояние между протонами СНз- или СНг-групп будет 0,178 нм. Подстановка этого значения в формулу (8.9) с N=3 дает значение второго момента СНз-группы 22,5 Гс , при N — 2 имеем для метильной группы — iU2 Гс . Если пренебречь вкладом более удаленных протонов, то второй момент ПИБ будет [(6/(8 -22,5)+2/(8 11,2)] Гс = 19,7 Гс . Если предположить, что протоны различных групп не могут сблизиться на расстояние, меньшее двойного ван-дер-ваальсова радиуса (0,24 нм), то можно показать, что их вклад в <ДЯ2 > не может превысить 10 Гс . В то,же время экспериментальное значение <ДЯг2> близко к 40 Гс . Это расхождение может быть объяснено тем, что в цепи полиизобутилена протоны соседних СНз-групп могут сближаться на расстояние, меньшее 0,24 нм. Это предположение основано на данных рентгеноструктурного анализа ПИБ, закристаллизовавшегося при растяжении. Так как точная кристаллическая структура ПИБ не определе-на целесообразно рассмотреть несколько моделей. Наиболее точные результаты дает модель, согласно которой полимерная цепь имеет форму спирали с семью мономерными единицами в витке. Если принять, что углы тетраэдрические, то <ДЯг > = 39 Гс . Если принять угол С—СНг—С равным 126°, то <ДЯ2 > = = 41 Гс . Таким образом, метод ЯМР может помочь определить структуру за-стеклованного полимера. Как для ПИБ, так и для полипропилена даже при температуре жидкого азота не достигаются предельные значения <ДЯ2 >, что может быть объяснено только движением СНз-групп. [c.223]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Согласно молекулярно-кинетической теории, при u = onst сила трения F с понижением температуры увеличивается по линейному закону. Экспериментальная проверка показала, что это справедливо лишь в определенном интервале температур. При некотором значении температуры Тк сила трения резко падает. Эта температура, называемая критической, несколько выше температуры стеклования полимера. Понижение F с уменьшением температуры ниже критической Тц связано главным образом с резким увеличением модуля упругости, а следовательно, с уменьшением 5ф. Значение Г, можно рассчитать исходя из тех же соображений, которыми мы пользовались при расчете критической скорости скольжения. При и = onst с понижением температуры время оседлой жизни Т] практически остается постоянным, но зато значительно увеличивается время процесса самодиффузии сегментов цепей Т2, в результате [c.375]

    Существует несколько методов определения температуры стеклования, основанных на том, что процесс стеклования полимеров всегда сопровождается постепенным изменением физических свойств (объема, плотности, днэлектрических и механических свойств и др.). Наибольшее распространение получили методы исследования удельного объема, теплоемкости, модуля упругости и деформации. [c.109]

    Температура стеклования полимеров зависит также и от напряжения, понижаясь I уиеличер ием напряжения. [c.220]


Смотреть страницы где упоминается термин Стеклование полимеров: [c.319]    [c.129]    [c.489]    [c.196]    [c.365]    [c.249]    [c.273]    [c.59]    [c.263]    [c.189]   
Физика полимеров (1990) -- [ c.0 ]

Высокомолекулярные соединения (1981) -- [ c.165 , c.408 , c.513 , c.567 ]

Введение в физику полимеров (1978) -- [ c.98 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.68 , c.69 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Физико-химия полимеров 1963 (1963) -- [ c.137 , c.153 , c.174 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.308 , c.309 , c.355 , c.387 , c.431 ]

Химия и технология синтетического каучука Изд 2 (1975) -- [ c.49 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.408 , c.465 , c.513 , c.567 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние молекулярного веса полимера на температуру стеклования

Влияние молекулярной массы на температуру стеклования полимера Марей

Влияние молекулярной массы полимера на температуру стеклования

Влияние пластификаторов на температуры стеклования и текучести полимеров

Влияние строения эпоксидных смол на температуру стеклования сетчатых полимеров

Г лава VI If О Переход, полимеров из высоко эластического в стеклообразное и вязкотекучее состояние . . Методы определении температуры стекловании полимеров

Журкова теория стеклования полимеров

Зависимость температуры стеклования линейных полимеров от различных факторов. Температура хрупкости

Зависимость температуры стеклования от молекулярных. характеристик полимера

Зависимость температуры стеклования полимеров от их молекулярной массы, химического состава, состава смесей и других факторов

К вопросу о температуре стеклования кристаллических полимеров (совместно с И. Ю. Марченко)

Концентрационная зависимость температуры стеклования пластифицированных полимеров. А. Е. Драпкин, А. И. Марей, В. С. Дмитриев

Кристаллизация и стеклование полимеров. Физические состояния аморфных полимеров

Методы определении температуры стекловании полимеров

Методы расчета температуры стеклования по химической структуре полимеров

Молекулярный вес полимеров и температура стеклования

Определение температур стеклования и текучести полимера

Определение температур стеклования смесей полимеров

Определения ф Структурное стеклование ф Механическое стеклование ф Сравнение процессов структурного и механического стеклования Оценка температуры стеклования статистических сополимеров и гомогенных смесей полимеров

ПЛАВЛЕНИЕ, КРИСТАЛЛИЗАЦИЯ И СТЕКЛОВАНИЕ ПОЛИМЕРОВ Фишер Поверхностное плавление кристаллитов в частично кристаллических полимерах (перевод Ю. Годовского)

Полимер способность к пленкообразованию и температура стеклования

Полимеры аморфные, температура стеклования

Полимеры неполярные, температура стеклования

Полимеры полярные, температура стеклования

Процессы стеклования полимеров

Размягчение полимеров и стеклование

Расчет температуры стеклования линейных полимеров

Расчет температуры стеклования сетчатых полимеров

СТЕКЛОВАНИЕ КАУЧУКОПОДОБНЫХ ПОЛИМЕРОВ Температуры перехода эластомеров в стеклообразное состояние. А. И. Марей, М. 3. Альтшулер, Е. Д. Панкратова

Сетчатые полимеры, температура стеклования

Соотношение между температурой стеклования и температурой плавления полимеров

Стеклование аморфных полимеров

Стеклование в смесях, сополимерах и привитых полимерах

Стеклование как основной релаксационный процесс в полимерах

Стеклование наполненных полимеров

Стеклование полимеров кинетические и динамические эффекты

Стеклование полимеров механизм

Стеклование полимеров механическое

Стеклование полимеров ориентационное

Стеклование полимеров скоростью

Стеклование полимеров структурное

Стеклование полимеров структурное истинное

Стеклование полимеров температура

Стеклование полимеров теории

Стеклование полимеров химическое

Стеклование полимеров. Три физических состояния аморфных линейных полимеров

Стеклования температура пластифицированных полимеров

Стеклообразное состояние и стеклование полимеров

Строение полимеров н температура стеклования

Таблица ЗПЗ.1. Температура стеклования полимеров

Температура стеклования и химическое строение полимеро

Температура стеклования кристаллических полимеров

Температура стеклования линейных полимеров

Температура стеклования наполненных полимеров

Температура стеклования смесей полимеров

Температура стеклования смесей полимеров и пластифицированных полимеров

Температура стеклования сополимеров и смесей полимеров

Температурно-временная эквивалентность вязкоупругого поведения аморфных полимеров и уравнение Вильямса — Лэндела — Ферри в области стеклования

Температуры стеклования и плавления сополимеров и смесей полимеров

Температуры стеклования пластифицированных наполненных полимеров

Теория стеклования наполненных полимеров

Термокинетические эффекты при стекловании и подсостояния аморфных полимеров

Термомеханические кривые и методика определения температуры стеклования полимеров

Термомеханический и другие методы определения температуры стеклования полимеров

Физические свойства полимеров стеклования

Фталевая кислота температуру стеклования полимеров

Химическое строение полимеров и температуре стеклования



© 2025 chem21.info Реклама на сайте