Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние скорости роста на константу распределения

    При использовании катализаторов Циглера, конечно, должна возникать очень сложная ситуация, так как на величину констант скорости реакции роста для этилена и пропилена, безусловно, оказывает влияние способ приготовления катализатора, от которого зависят размеры частиц, кристаллическая структура, распределение частиц по размерам и химический характер инициирующих комплексов. Доказано, что очень тонкая суспензия, образующаяся при взаимодействии четыреххлористого титана и алкилов алюминия, полимеризует этилен с весьма высокими скоростями. Однако а-олефины на таком катализаторе полимеризуются медленно с образованием только атактических полимеров. Вместе с тем грубодисперсный катализатор того же состава проявляет большую активность при полимеризации а-олефинов. При этом в результате полимеризации получаются в основном изотактические полимеры. Но поскольку известно, что по мере протекания реакции суспендированные частицы катализатора измельчаются, константы сополимеризации rj и г , очевидно, будут различными для различных фракций катализатора, что не способствует получению надежных результатов. [c.225]


    ВЛИЯНИЕ СКОРОСТИ РОСТА НА КОНСТАНТУ РАСПРЕДЕЛЕНИЯ [c.124]

    Здесь значение Р фактически понижается от 0,9 до 0,4 с ростом кислотности кетона такое значительное изменение необходимо связывать с изменением природы переходного состояния. Аналогичный вывод можно получить на основании данных по изменению констант скоростей серии псевдокислот с изменением основности атакующего нуклеофила. Таким образом, можно предположить, что изменение в структуре оказывает небольшое влияние на распределение электронов С—Н-связи в основном состоянии молекулы. Напротив, ионизация вносит большие изменения в энергию и распределение заряда в замещаемом анионе. Рассмотрим реакцию основания с двумя однотипными молекулами, которые дают два аниона Х1 и Хг соответственно, причем Хг имеет значительно большую энергию сопряжения Е .. Эти реакции могут быть представлены кривыми профиля потенциальной энергии, т. е. как функции изменения энергии в зависимости от изменения длины связи X—Н (рис. 5-8). Увеличение энергии сопряжения уходящей группы понижает правую часть кривой, что приводит к сдвигу в структуре переходного состояния в сторону реагирующих молекул иными [c.186]

    Осложнения возникают, если один или несколько параметров уравнения (10) или (12) систематически изменяются в процессе хроматографического разделения. Часто причиной является перегрузка колонки веществом или изменение набивки и степени смачивания по длине колонки, изменения температуры, расслоение комбинированной жидкой фазы, изменения скорости протекания, неравномерность распределения вещества по сечению и зависимость поглотительной способности неподвижной фазы от концентрации. При тщательном проведении зксперимента и соответствующем выборе условий опыта можно исключить все упомянутые источники ошибок, кроме последнего. Постоянство же козффициентов распределения и адсорбции К ) является идеальным случаем, который часто имеет место (особенно при адсорбции) лишь в области малых и очень малых концентраций. Для большинства веществ сродство к твердой неподвижной фазе уменьшается с ростом концентрации уже задолго до достижения состояния насыщения изотермы адсорбции при этом обычно изогнуты в сторону оси концентрации. В случае распределительных изотерм возможно искривление в сторону как одной, так и другой оси. Это явление объясняется, как правило, процессами ассоциации. Так как константа распределения вещества в хроматографической колонке охватывает все значения между О и некоторым максимумом, искривление изотермы неизбежно. Если, например, ПК уменьшается с ростом концентрацйн, то максимум зоны имеет тенденцию перегонять фронт зоны, в результате чего образуется асимметричное распределение с резким фронтом и более или менее вытянутым хвостом. Последний возникает из-за того, что скорость перемещения в заднем конце зоны уменьшается с уменьшением концентрации в той же мере, что и К. Хвост кончается в том месте, где К становится постоянным. Это, часто обременительное, явление имеет место в принципе только при изменении условий хроматографического разделения. Соответствующий градиент концентрации в подвижной фазе может, например, это все возрастающее влияние усилить до такой степени, что зтот эффект будет в точности компенсировать уменьшение кривизны изотермы. Такая специальная методика носит название градиентного злюирования [32]. [c.101]


    Реакции в гетерогенных условиях и полимеризация в массе при более высоких степенях превращения могут привести к кинетическим осложнениям, хотя причины для последних не должны быть одинаковыми в обоих случаях. Как впервые наблюдалось в случае полимеризации метилметакрилата, а затем и для других виниловых мономеров, особенно метилакрилата, увеличение скорости нри упомянутых превращениях происходит одновременно с увеличением среднего молекулярного веса, который изменяется с изменением природы полимера [45]. Этот эффект означает уменьшение скорости обрыва по сравнению со скоростью роста цепи его приписали уменьшению доступности концов радикалов по отношению друг к другу вследствие осаждения радикалов или образования сшитых структур и (или) снижению, подвижности радикалов, вызванному высокой вязкостью среды. В случаях полимеризации стирола, метилметакрилата, метилакрилата и дека-метиленгликольдиметакрилата [46—48] действительно наблюдалось уменьшение величин двух констант скорости. Эти измене-нЕся, естественно, влияют также на распределение молекулярного веса. Остается выяснить, могут ли многочисленные ники, наблюдаемые на седиментационных диаграммах [49], произойти от влияния геля. Необходимые кинетические уравнения можно получить при допущении разумных эмпирических выражений для изменения параметров скорости со степенью превращения и размером реагирующего радикала [50]. Однако до сих пор не получено никаких числовых результатов. [c.178]

    Уравнение (VI.4) связывает скорость роста растения под влиянием ауксина с коэффициентом распределения и константами Гаммета. Коэффициенты К, К, К", р находятся для каждой экспериментальной серии статистическими методами. Так, действие замеигенных феиоксиуксусных кислот на Avena описывается уравнением [c.368]

    Авторами работы [99] предложено использовать метод регуляризации А. Н. Тихонова [100, 101] для нахождения функции распределения АЦ по вероятности обрыва макроцепи из данных о суммарном ММР полимера. В исследованиях [102, 103] из экспериментально определенных кривых ММР полибутадиена с использованием метода регуляризации было установлено, что, независимо от природы используемого диена и условий проведения полимеризации, процесс образования макромолекул на лантанидных катализаторах МдС1з-3(ВиО)зРО в сочетании с АОС протекает с участием четырех типов АЦ, отличающихся соотношением констант скоростей реакций роста и передачи цепи. Найдено, что структура АОС оказывает влияние как на это соотношение, так и количество АЦ каждого типа. [c.61]

    Влияние стереорегулярности на энтропию макромолекул рассмотрено в работе [96]. Показано, что энтропия полимера со статистическим распределением звеньев в цени менее отрицательна (на 1,38 кал град-моль больше, чем энтрония кристаллического полимера). Дэйнтон и Айвин [8] рассмотрели влияние изомеризации мономера на термодинамику полимеризации. Шварц с сотр. [95] исследовали влияние изменения константы скорости реакции роста в ходе полимеризации. [c.34]

    Если учесть еще то обстоятельство, что в результате одного акта роста цепи ее длина увеличивается на одно звено, тогда как при реакции обмена цепей длины цепей обменивающихся полимеров изменяются на величину, соизмеримую со средней длиной цепи, то становится ясно, что при соизмеримых отношениях констант скоростей межцепного обмена и реакции роста цепи наиболее вероятное распределение в полимеризующейся системе может устанавливаться задолго до окончания процесса образования полимера. Таким образом, вопрос о влиянии реакции межцепного обмена на кинетику изменения молекулярно-весового распределения образующегося полимера сводится к выяснению ее относительной скорости, к нахождению своего рода времени релаксации системы (межцепной обмен в этом смысле и есть релаксационный процесс). [c.67]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]


    Влияние различных условий на молекулярновесовое распределение полимеров рассмотрено в гл. II. При отсутствии осложняющих факторов рост живущих полимеров приводит к узкому пуассоновскому молекулярновесовому распределению, если полимеризацию ведут активные частицы одного типа. Присутствие двух или более видов частиц, участвующих в росте с различными константами скорости, расширяет распределение, и ширина распределения зависит от скорости обмена. Так, если в полимеризации участвуют только свободные ионы и ионные пары, отклонение молекулярновесового распределения от распределения Пуассона определяется скоростью диссоциации ионных пар на свободные ионы. Следовательно, константу скорости диссоциации можно найти из наблюдаемых отклонений экспериментального распределения от распределения Пуассона. [c.446]


Смотреть страницы где упоминается термин Влияние скорости роста на константу распределения: [c.295]    [c.302]   
Смотреть главы в:

Рост монокристаллов -> Влияние скорости роста на константу распределения




ПОИСК





Смотрите так же термины и статьи:

Константа распределения

Константа скорости

Распределение по скоростям



© 2025 chem21.info Реклама на сайте