Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны кислотность и основность

    Рассмотрим в качестве примера общего кислотно-основного катализа реакцию енолизации кетонов. В присутствии кислоты К эта реакция протекает по схеме  [c.348]

    Предложенная Паркером классификация растворителей основана на специфическом взаимодействии растворителя с растворенным веществом. При этом различают диполярные апротонные, диполярные протонные и аполярные апротонные растворители. Диполярные апротонные растворители — это растворители с высокой диэлектрической проницаемостью. (е> 15) и большими дипольными моментами (ц> 2,50), для них характерно отсутствие атомов водорода для образования водородных связей. К этой группе растворителей относят кетоны, нитрилы, диметилсульфоксид, диметилформамид. и др. Ацетонитрил, например, проявляет кислотные свойства по отношению к такому слабому в воде основанию, как а-пико-лин (/Св = 9,3-Ю ), и основные свойства по отношению к кислотам Льюиса, но кислотно-основные свойства ацетонитрила связаны с полярным характером его молекул  [c.32]


    Амфотерные растворители проявляют слабо выраженный кислотно-основной характер, т. е. они являются более слабыми кислотами, чем протогенные, и более слабыми основаниями, чем протофильные. К амфотерным растворителям относят воду, спирты, кетоны и др. Резкую границу между амфотерными и протогенными или протофильными растворителями провести трудно, так как на характер кислотно-основного взаимодействия и на направление процесса существенное влияние оказывают кислотно-основные свойства взаимодействующего партнера. [c.35]

    Енолизация — это кислотно-основная реакция (т. 2, реакция 12-22), в которой происходит перенос протона от а-атома углерода к реактиву Гриньяра. Карбонильное соединение превращается в енолят-ион, из которого при гидролизе регенерируется исходный альдегид или кетон. Енолизация играет важную роль не только для затрудненных кетонов, но также и для тех кетонов, для которых характерно относительно высокое содержание енольной формы, например для сложных -кетоэфиров и [c.367]

    Задача 19.22. Удобная проба на альдегиды и большинство кетонов основана на том, что карбонильное соединение вызывает изменение окраски раствора солянокислого гидроксиламина, содержащего кислотно-основный индикатор. Что лежит в основе этой пробы Задача 19.23. Продолжите таблицу, которую вы составили в задаче 18.10, стр. 578, включив в нее альдегиды и кетоны и уделив особое внимание окислительным агентам. [c.617]

    Влияние других сорастворителей. Присутствие в данном растворителе других сорастворителей (помимо воды) может оказывать существенное влияние на его шкалу кислотности в зависимости от содержания, природы и характера растворителя (см. рис. 145). Разумеется, это влияние может иметь большие последствия в процессе кислотно-основного титрования. Успешное титрование индивидуальных электролитов и возможность осуществления дифференцированного титрования их смесей прежде всего зависит от изменения кислотно-основных свойств избранного растворителя, происходящего в процессе смешивания растворителей— намеренно добавляемых к данному растворителю (спиртов, кетонов, уксусного ангидрида и т. п.), вводимых с титрантами (воды. [c.428]

    Наряду с образованием в гомогенном катализе промежуточных соединений определенную роль также могут играть весьма кратковременные сочетания ионов и молекул, которые обусловлены ионо-дипольным взаимодействием или образованием водородных связей. При таких взаимодействиях должна происходить поляризация молекул реагента и, как следствие этого, изменение их реакционной способности. Так, например, с современной точки зрения кислотой считается вещество, способное отщеплять протон, а основанием — вещество, присоединяющее протон. При кислотно-основном катализе кислота отдает свой протон молекуле субстрата. Это сопровождается внутримолекулярным превращением субстрата, связанным с изменением характера и расположения связей, а затем отщеплением протона от другого участка молекулы и присоединением его к сопряженному основанию. Так, например, в реакции енолизации кетонов [c.119]


    ПРОТОЛИТИЧЕСКИЕ РЕАКЦИИ, включают стадию протолиза — переноса протона от субстрата (к-ты или основания) к Катализатору. Лежат в основе кислотно-основного катализа. Примеры П. р. енолизация кетонов, р-ции через оксониевые ионы (гидратация олефинов в спирты и др.). [c.484]

    Необходимость кислотно-основного катализа в случае гидратации ацетона и отсутствие подобного требования при гидратации альдегидов объясняется тем, что в кетонах положительный заряд на атоме углерода карбонильной группы меньше, и поэтому нужна начальная атака ионами "ОН (или атака атома кислорода ионами Н" ), тогда как в случае альдегидов более положительный атом углерода может атаковаться молекулами Н О непосредственно. Несколько неожиданным, в свете сказанного выше, является тот факт, что скорость гидролиза МеСНО наблюдаемая при pH 7, сильно возрастает при значениях pH 4 или 11. [c.202]

    Исходя из несомненно правильного допущения об идентичности аниона енола и аниона кетона, М. И. Кабачник развил фундаментальную теорию таутомерии как кислотно-основного равновесия. Ход его мыслей мы приведем в несколько упрощенном виде. При электролитической диссоциации енола и кетона в растворителях, подобных воде, спирту, эфиру, бензолу, эти растворители не остаются индифферентными и играют роль льюисовых оснований (см. стр. 158). Поэтому уравнения электролитической диссоциации обеих таутомерных форм следует изобразить так  [c.419]

    Механизмы (5.49) и (5.50) согласуются с различиями в-восприимчивости енолизации разных кетонов к общему кислотно-основному катализу. Например, енолизация ацетона в водном растворе сильно ускоряется под действием общих кислот, тогда как енолизация бромацетона и пировиноградной кислоты к ним нечувствительна. Этот эффект обусловлен снижением.. р/Са карбонильных групп двух последних соединений за счет электроноакцепторных заместителей. [c.127]

    Формулы (1)—(15) яляются обычными формулами теории кислотно-основного равновесия, они применимы к кетонам и энолам как к кислотам. От них можно перейти к константе таутомерного (тройного буферного) равновесия  [c.453]

    Исключения из этой последовательности наблюдаются в том случае, когда кроме фактора основности появляются какие-либо другие факторы, такие, как стерические эффекты. Например, трет-бутиловый спирт связывается с ЛСР слабее, чем простые кетоны. Значительные сдвиги наблюдаются при комплексообразовании с сульфоксидами, сульфитами, сульфинами, N-оксидами, N-нитро-зосоединениями и азоксисоединениями. Для карбоновых кислот и фенолов сдвиги наблюдаются при использовании ЛСР с менее основными лигандами (например, fod). Добавление к кислотам или фенолам Eu(dpm)3 приводит к нежелательным кислотно-основным реакциям аниона дипивалоилметана с протонами гидроксильной группы фенолов. [c.520]

    Таким образом, к кетонам и энолам как к кислотам полностью применимы известные закономерности кислотно-основного равновесия, выведенные для обычных кислот и оснований. Выведенные этим путем закономерности имеют важное значение, так как создается возможность количественной характеристики таутомерных превращений кето-энолов. [c.454]

    Циклические ангидриды, и особенно фталевый ангидрид, по сравнению с большинством производных карбоновых кислот проявляют заметную склонность к образованию продуктов конденсации, аналогично кетонам. Примеры некоторых подобных реакций [87—90] показаны на схемах (89) — (92). Реакция, представленная на схеме (89), приводит к соединениям, известным как фта-леины, среди которых есть рН-чувствительные красители, применяемые в качестве индикаторов кислотно-основного титрования. [c.106]

    Представление о неравномерной электронной поверхности, изложенное в начале этой главы, описывается взаимодействиями П—Р через взаимодействия между электронодефицитными и богатыми электронами группами в молекулах полимеров и растворителей. Это представление тесно связано с трактовкой Фаука [25] взаимодействий П—П и П—Р, сделанной им на примере основания Льюиса, в котором кислоту рассматривают как акцептор, а основание — как донор электронных пар. Наиболее сильно фторированные и хлорированные молекулы являются кислыми из-за тенденции атомов галогена притягивать электроны, переводя атомы углерода, к которым они присоединены, в электронодефицитное состояние. По тем же причинам спиртовые, карбонильные, фенольные и нитрогруппы являются кислыми, как и электрофильные атомы углерода карбонильных групп в кетонах, эфирах и карбонатах и атомы углерода в нитрильных группах. Типичными носителями основных свойств являются атомы кислорода карбонильных групп, эфиров и спиртов, атомы азота в аминах, амидах и нитрилах, двухвалентные атомы серы и я-электроны. Полимеры, содержащие галоген или иитрогруппы, например поливинилхлорид или нитрат целлюлозы, — кислые. Полиэфиры, полиамины., поливинилпироллидон и полимеры с ароматическими или оле-финовыми группами являются главным образом основными. Имеются также полимеры, которые могут рассматриваться как амфотерные, — поливиниловый спирт, полиамиды, полиакриловая кислота и полиакрилонитрил. Влияние кислотно-основных взаимодействий между полимером и растворителем или двумя полимерами в смеси на растворяющую способность можно оценить по степени ИК-спектрального сдвига [25] — методом, аналогичным первоначально используемому Гордайем и Стенфордом для определения ИВС. [c.202]


    Общий кислотно-основной катализ реакций, подобных гидратации карбонильных соединений, традиционно представляют как независимые последовательные акты переноса их протонов от катализатора к растворителю (или наоборот). Недавно, однако, было получено доказательство, что перенос может происходить вдоль цикла, составленного из отдельных молекул растворителя, субстрата и кислоты или основания, связанных между собой водородными связями. Таким образом, некаталитическая (катализируемая водой) гидратация кетона имеет, вероятно, вид, представленный на схеме (2.112) в процессе, катализируемом R3N, вода замещается амином. Полагают, что перенос протона по циклу проходит скорее последовательно, чем синхронно [73]. [c.407]

    В тех случаях, когда связь между металлом и ароматическим кольцом носит ковалентный характер, действует обычный механизм с участием аренониевых ионов [435]. В тех случаях, когда эта связь имеет ионную природу, процесс представляет собой простую кислотно-основную реакцию. Металлы могут замещаться и на другие электрофилы. Например, азосоединения можно получить в результате атаки ионов диазония на арил-цинковые или арилртутные соединения [436] или на реактивы Гриньяра [437], а арилтриметилсиланы Аг5 Мез взаимодействуют с ацилхлоридами в присутствии хлорида алюминия, давая кетоны типа АгСОР [438]. Алифатический аналог этого процесса см. реакцию 12-22. [c.389]

    Исследование кислотно-основных реакций, протекающих в среде кетонов, показывает, что кетоны в реакциях с кислотами ведут себя как основания. [c.109]

    Инструментальные методы кислотно-основного титрования в среде кетонов рассмотрены также в [398—406]. [c.111]

    Многочисленные данные исследований таутомерного кето-енольного равновесия в растворах свидетельствуют о том, что оно представляет собой кислотно-основное равновесие двух кислот кетона и енола,— образующих при ионизации одни и те же, общие им обеим, анионы енолятного строения [65, 66]. Переход протона от кетона к енолу и обратно осуществляется при участии третьих молекул — переносчиков протона 5, способных к обратимому присоединению протона  [c.645]

    Подкисленный или подщелоченный перманганат калия окисляет очень многие соединения, образуя при этом пятна от желтой до белой окраски на фиолетовом фоне хроматограмм. После сушки фон становится коричневым, а через несколько суток даже исчезает. Для обнаружения веществ кислотного или основного характера также пригодны кислотно-основные индикаторы в водном или спиртовом растворе. Раствором динитро-фенилгидразина обнаруживают вещества, содержащие карбонильную группу. В частности, с ним интенсивно реагируют ароматические альдегиды и кетоны. Раствор нингидрина — очень чувствительный реагент на аминокислоты и вообще алифатические амины. [c.95]

    Исследование катализа. Катализ, наблюдаемый в реакциях галоидирования кетонов, относится к типу общего кислотно-основного катализа иными словами, все кислые и основные частицы, присутствующие в растворе, обладают каталитической активностью. В результате проведения реакций йодирования ацетона в буферных растворах, например в системе уксусная кислота — уксуснокислый натрий, соответственно монохлоруксусная кислота — монохлоруксуснокислый натрий, оказалось возможным определить следующие каталитические константы различных присутствующих в растворе частиц, обладающих каталитической активностью (Дау-сон)  [c.91]

    Кетимин и основания Шиффа, предложенные в качестве промежуточных соединений в реакциях конденсации, — не единственные соединения, присутствующие в растворах карбонильных соединений и аминов. Например, аммиаке бензальдегидом дает имин 32 [75] и гидробензамид 33 [76]. Бторичные амины, как известно, в растворах метанола дают 34 [77], а при более высоких концентрациях амина — 35. Другие тетраэдрические промежуточные соединения, подобные СвН5СН(ОН)КН2, не образуются в высоких концентрациях из ароматических альдегидов, но могут наряду с другими соединениями приобретать основное значение в реакциях алифатических альдегидов и кетонов. Определение деталей нуклеофильного катализа и характерной для реакции конденсации кислотно-основной зависимости — проблема, заслуживающая внимания. [c.168]

    Таким образом, проведенные исследования показывают, что состав продуктов нревратцення окиси олефина на различных катализаторах зависит от кислотно-основных свойств их иоверхности. С возрастанием кислотности катализатора наблюдается увеличение выхода кетона и снижение выхода непредельного спирта (табл. 2). Увеличение основных свойств катализатора приводит к обратным результатам. Дегидратация в диеновые углеводороды наиболее селективно протекает на контактах, обладающих средними по силе кислотными и основными центрами. [c.50]

    При переходе кетонной формы в енольную атом водорода от С-2 (а-атом углерода, СП-кислотный центр) перемещается к атому кислорода кетонной группы (основный центр). Подвижность этого атома водорода объясняется тем, что а-атом углерода связан с двумя электроноакцепгорными группами — карбонильной и сложноэфирной. За счет сильного -/-эффекта каждой из этих групп у а-ато-ма углерода возникает СП-кислотный центр. [c.334]

    Ароматические кетоны в большинстве случаев ведут себя как настоящие индикаторы Гаммета. Исследование Флексером и сотрудниками [112, 113] основности некоторых ацетофенонов по методу индикаторов Гаммета имеет исторический интерес, поскольку они одними из первых продемонстрировали применимость ультрафиолетовой спектрофотометрии для изучения кислотно-основных свойств соединений. Карбонильные группы как ароматических, так и алифатических кетонов поглощают в ультрафиолетовой области, но каждое соединение из-за влияния среды ведет себя по-особому. Это влияние бывает настолько сильным, что может создаться ложное впечатление, будто имеет место протонирование. Например, одна из первых попыток изучить протонирование ацетофенона с помощью колориметрии в видимой области [22] почти целиком основывалась на ошибочном наблюдении сдвига ультрафиолетовой полосы поглощения в область желтых лучей, вызванного растворителем. [c.256]

    Для изомерных превращений альдегидов и кетонов достаточны весьма мягкие условия, поэтому направляющее влняниекаталитически активных веш,еств значительно облегчает понимание характерных особенностей отдельных реакций этого типа. Нескольких примеров достаточно, чтобы показать сложность этого класса реакций органической химии, особенно реакций, протекающих под влиянием кислотно-основных катализаторов. [c.177]

    Файзулаев и др. [337] изучили полярографическое поведение неводных растворов аминов, аминофенолов, альдегидов и кетонов. Разработаны методы биамперометрического титрования с двумя медными индикаторными электродами изопропанольных растворов алифатических и ароматических аминов и некоторых аминокислот, основанные на кислотно-основном взаимодействии этих веществ с изопропанольным раствором НС1. [c.96]

    С физико-химической стороны таутомерное кето-енольное равновесие является сложным случаем кислотно-основного протолитическо-го равновесия в растворе оно отличается от обычного кислотно-ос-новного равновесия, во-первых, тем, что одному роду анионов соответствует не одна кислота, как обычно, но две кислоты, и, следовательно, анион обладает двумя различными константами основности (при присоединении протона к двум различным атомам аниона), и, во-вторых, тем, что одна из кислот, участвующих в равновесии (именно кетонная форма), является псевдокислотой, ионизация которой протекает медленно. В остальном таутомерное кето-енольное равновесие подчиняется тем же закономерностям, что и ионизационное равновесие обычных слабых кислот. [c.646]

    Отклонения от корреляционного соотношения Брёнстеда могут наблюдаться в том случае, если переходное состояние характеризуется специфическими взаимодействиями. Вследствие небольшого размера протона обычные стерические затруднения почти не влияют на кислотно-основное равновесие. Вместе с тем наличие объемных групп у одного или обоих реактантов, сказывается на кинетике реакции, поскольку такие группы препятствуют сближению частиц А] и В2 в переходном состоянии. Известно несколько примеров, отчетливо демонстрирующих этот эффект в реакциях, катализируемых кислотами или основаниями. Так, стерические затруднения проявляются при катализе замещенными пиридинами и их катионами гидратации ацетальдегида [45], когда наличие заместителей в положениях 2 и 6 приводит к уменьшению каталитической активности. Аналогично замедление процесса, обусловленное пространственными затруднениями, наблюда-. ют при катализе алкилпирилннами или их катионами галогенирования кетонов [46], мутаротации глюкозы [47] и инверсии ментона [47]. Противоположный эффект был обнаружен в катализируемых анионами реакциях галогенирования различных кетонов и эфиров [48]. Для большинства субстратов и карбоксилат-анионов соотношение Брёнстеда выполняется точно. Однако, если и катализатор и субстрат содержат вблизи реакционного центра заместители большого размера (алкильную или арильную группу или бром), наблюдаемая скорость реакции превышает ожидаемую на величину, достигающую 300%. Это означает, что близкое расположение в переходном состоянии двух больших групп должно понижать его энергию. Стабилизация переходного состояния, вероятно, определяется не столько энергетикой любого непосредственного притяжения между группами, сколько эффектом образования полости в растворителе путем подавления некоторых взаимодействий между молекулами воды. Две находящиеся на близком расстоянии группы будут приводить к разрыву меньшего числа связей между молекулами воды при образовании полости, чем группы, удаленные друг от друга. Этот фактор оказывает стабилизующее действие на переходное состояние. Порядок величины указанного эффекта можно проиллюстрировать, воспользовавшись данными из работы Батлера по изучению изменения растворимости в воде последовательно расположенных членов некоторых гомологических рядов. Батлер нашел [49], что каждая дополнитель- [c.261]

    Соотношение Майера, установленное эмпирически, может быть, как показал Кабачник [23], получено при рассмотрении кето-енольного равновесия как кислотно-основного процесса, при котором при диссоциации кетонной и енольной форм образуется один и тот же ион  [c.145]

    Протонная теория кислот и оснований признает существование многочисленных и разнообразных оснований как молекулярных, так и ионных ион гидроксила, амид- и эток-сид-ион, пиперидин и другие амины, спирты, эфиры, ацетат-, гидросульфид и бисульфат-ион, кетоны и многие другие. Она признает также, что кислотно-основные явления не [c.16]

    Для кислотно-основного титрования широко применяют хлорную к-ту, самую сильную к-ту в певодных р-рах. Ее растворы чаще всего используют в качестве титрантов для определения оснований и солей. Прн титровании в кислых растворителях р-ры хлорной к-ты готовят в безводных уксусной, муравьиной и пропионовой к-тах. При использовании гликолевых растворителей хлорную к-ту растворяют в гликолях. Очень часто нсиользуют раствор хлорной к-ты в диоксане нри титровании в среде дифференцирующих растворителей. При титровании в среде кетонов и смесей бензола пли хлороформа с кетонами или ацетонитрилом растворы хлорной к-ты готовят в метил-этилкетоне и других кетонах. Прп кислотно-основном титровании в неводных р-рах прпменяют также иеводные р-ры НС1, H SOj и HNO j, п-толуолсульфо-новой и нек-рых других сульфоновых к-т, хотя по силе они уступают хлорной к-те. Растворы хлорной и других к-т в неводных средах устанавливают ире-им. ио X. ч. карбонату натрия, бифталату калия, тетраборату калия и дифени.тгуанидин г. [c.101]


Смотреть страницы где упоминается термин Кетоны кислотность и основность: [c.16]    [c.533]    [c.126]    [c.89]    [c.419]    [c.16]    [c.50]    [c.330]    [c.205]    [c.146]    [c.20]    [c.242]    [c.734]   
Органическая химия (1990) -- [ c.444 , c.445 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

ЛИЗ кислотно основной



© 2025 chem21.info Реклама на сайте