Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия цепи макромолекулы

    Для определения энтропии смешения линейного полимера с низкомолекулярным растворителем необходимо предположить, что разме ) сегментов макромолекулы (звенья) равен размеру молекулы растворителя. Иногда в качестве сегмента берут мономерную единицу, а за нх число г в цепи макромолекулы принимают степень полимеризации. Используя решеточную модель раствора, в которой отдельные узлы решетки заняты молекулами растворителя или сегментами макромолекулы, обладающей гибкостью, рассчитывают число возможных расположений микромолекул. Число частиц, принимающих участие в перестановках, равно = 1 22. После расчета полной статистической вероятности Я в соответствии с уравнением Больцмана (5 = й 1пй) определяют энтропию смеше- [c.322]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Размеры каждого сегмента (иногда сегмент может совпадать с мономерной единицей, тогда Х=Р — степени полимеризации, но это отнюдь не обязательно) выбраны так, что они равны размерам молекулы растворителя. Ясно, что энтропия растворения макромолекул не будет выражаться формулой (И-1), так как, кроме перестановок целых молекул относительно частиц растворителя, существует еще большая дополнительная энтропия, возникающая вследствие перестановки отдельных сегментов внутри каждой макромолекулы-клубка, т. е. в результате теплового движения звеньев цепи. Это дополнительная конфигурационная энтропия макромолекул, связанная с изменением расположения отдельных звеньев цепей по отношению к растворителю без изменения положения центров тяжести целых макромолекул. [c.45]

    Извитый характер свободных цепей макромолекул привел в прошлом к интуитивному предположению, что кристаллическое состояние с наименьшей свободной энергией реализуется при значительном содержании в системе аморфных областей. Это заключение основано на том, что понижение энтальпии в такой гетерогенной системе полностью компенсируется выигрышем энтропии, обусловленным конформационной лабильностью аморфных участков цепей. Из этого следует, что по мере повышения температуры, кристаллические сегменты цепи будут постепенно переходить в аморфное состояние, и аморфные области будут расти. Процесс плавления должен был бы при этом осуществляться непрерывно в широком интервале температур. Хотя гипотеза и кажется правдоподобной, если исходить из свойств единичной цепи, она полностью противоречит реальным наблюдениям кристаллизации и плавления полимеров в блоке. [c.41]


    Рассмотрим раствор бинарного сополимера АБ в индивидуальном растворителе. Принимаем следующие допущения 1) изменение энтропии при растворении сополимера равно изменению энтропии для гомополимера с той же степенью полимеризации [11, 14, 15] 2) взаимодействие растворителя с сополимером АВ описывается с помощью эффективного параметра %х [14, 16], который является функцией состава, но не зависит от длины цепи макромолекулы. Причем [c.323]

    При введении наполнителя в граничных слоях плотность упаковки макромолекул уменьшается, поскольку при этом происходят также конформационные ограничения, т.е. энтропия цепей уменьшается. Это означает, что полимер переходит в термодинамически менее равновесное состояние. [c.97]

    Изолированная макромолекула так же стремится свернуться в клубок, как газ стремится расшириться и то и другое приводит к уменьшению свободной энергии системы вследствие увеличения энтропии. Клубки макромолекул называют глобулами. В очень разбавленных растворах полимерные цепи имеют глобулярное строение. Образование глобулярных частиц, обладающих наименьшей поверхностью, аналогично стягиванию жидкости в каплю под действием поверхностного натяжения (рис. 60). [c.162]

    Предпочтительная конформация макромолекулы определяется внутримолекулярными связями боковых групп. Именно эти связи обеспечивают конформационный порядок макромолекулы. Этот порядок уменьшает энтропию цепи, но его энергетическая устойчивость зависит от прочности внутримолекулярных связей боковых фупп. Изменение этих связей ведет к конформационным изменениям в цепи. В живых системах все конформационные изменения пептидов обратимы, так как возможность конформацион-ных переходов обеспечивается устойчивостью (прочностью) основной цепи пептида. [c.44]

    Полученная формула определяет чисто конфигурационную энтропию, т. е. учитывает только перемену мест молекул растворителя и звеньев цепи макромолекул. Растворы, отвечающие такому предельному случаю, называются атермическими растворами (при смешении не происходит изменения внутренней энергии — тепловой эффект равен нулю). Чтобы данную теорию можно было применить для реальных растворов полимеров, имеющих небольшие отклонения от строго атер-мических растворов, предложено учитывать изменение внутренней энергии с помощью теории регулярных растворов. В отличие от атермических растворов для регулярных растворов энтропия смешения принимается равной энтропии при идеальном смешении, а неидеальность системы обусловлена только изменением внутренней энергии (межмолекулярным взаимодействием). [c.322]

    Как уже указывалось выше, макромолекулы в конденсированном аморфном состоянии имеют клубкообразную конфигурацию, характеризующуюся тем, что расстояние между двумя любыми точками цепи, разделенными не слишком малым числом атомов, много меньше контурной длины отрезка цепи между этими точками. Если к таким точкам приложить деформирующее усилие, то отрезок цепи между ними сможет растянуться до размеров, намного превышающих исходное расстояние между рассматриваемыми точками. Так как растяжение цепи сопровождается уменьшением энтропии, то после снятия нагрузки цепь вернется в свое исходное клубкообразное состояние. Этот же механизм действует и в том случае, если имеется совокупность цепей, связанных в сетку. Именно этим обусловлена способность эластомеров к большим обратимым деформациям. [c.48]

    Как и в обычных растворах, способность растворяться определяется в первую очередь тепловым движением частиц ( 125). Возрастание энтропии, происходящее при растворении, является в термодинамическом отношении наиболее общим фактором, благоприятствующим процессу растворения. При этом основную роль играет не передвижение всей макромолекулы полимера, а движение отдельных звеньев цепи. В системах, в которых молекулы жидкости (растворителя) достаточно интенсивно взаимодействуют со звеньями макромолекул полимера, энергетический эффект этого взаимодействия также благоприятствует процессу растворения. Противодействует же ему главным образом необходимость затраты работы на раздвижение смежных звеньев макромолекул и на преодоление взаимного притяжения между молекулами растворителя. [c.599]

    Согласно другому мнению при сближении частиц, на поверхности которых адсорбированы отдельные звенья макромолекул, уменьшается число конформаций, осуществляемых гибкими цепями стабилизатора (рис. IX, 96). Такое уменьшение конформаций вследствие стесненности макромолекул между сблизившимися частицами приводит к снижению энтропии, а следовательно, и [c.285]

    Растворение неполярного поли-и.то-бутилена в неполярном же изо-октане идет только вследствие повышения энтропии без выделения тепла, т. е. смешение имеет здесь изотермический характер. Существенно, что при растворении поли-г(зо-бутилена в изо-октане, гидрированном димере зо-бутилена, энергетический барьер при враш,ении отдельных звеньев цепи молекулы не изменяется, так как действие межмолекулярных сил в растворе такое же, что и в самом поли-и.эо-бутилене. Иными словами, растворение в этом случае происходит без изменения гибкости макромолекул. [c.442]


    На первой стадии набухания происходит сольватация макромолекул в результате диффузии растворителя в высокомолекулярное вещество. Эта стадия характеризуется выделением тепла и упорядочением расположения молекул растворителя около макромолекул, в результате чего энтропия системы в первой стадии растворения обычно даже понижается. Основное значение этой стадии при растворении сводится к разрушению связей между отдельными макромолекулами, вследствие чего цепи становятся свободными и способны совершать тепловое движение в целом. [c.444]

    Поскольку при выводе функции распределения используется модель свободно-сочлененной цепи, то, очевидно, предполагается, что изменение конформации макромолекулы не сопровождается изменением внутренней энергии. Отсюда следует, что при деформации свободно-сочлененной цепи (например, при растяжении) изменение ее свободной энергии полностью обусловлено изменением ее энтропии. [c.146]

    Большая энтропия смешения при растворении полимеров объясняется тем, что резко возрастает возможность теплового движения отдельных звеньев цепей гибких макромолекул в растворе. В этих растворах кинетическими единицами являются отдельные звенья цепей. [c.215]

    К противоположному случаю относятся мягкие (или пластифицированные) каучуки, обладающие модулем Юнга примерно от 10 до 10 дин см и обратимой эластичностью с удлинением до нескольких сот процентов. Если такой материал растянуть до некоторой длины в пределах умеренного растяжения и затем понижать температуру, поддерживая длину постоянной, то напряжение будет падать пропорционально понижению - абсолютной температуры. Согласно ур. (XVII, 3), это означает, что в данном случае изменение внутренней энергии, связанное с этим напряжением, равно нулю. Следовательно, сила, стремящаяся сократить длину растянутого каучука, всецело обусловлена уменьшением энтропии его при растяжении. Иначе говоря, это означает, что гибкие цепи макромолекул имеют в растянутом каучуке меньшее число возможных конформаций, чем в иерастянутом. Ввиду того что внутренняя энергия каучука не изменяется [c.576]

    К противоположному случаю относятся мягкие (или пластифицированные) каучуки, обладающие модулем Юнга примерно от 10 до 10 дин/см и обратимой эластичностью с удлинением до нескольких сот процентов. Если такой материал растянуть до некоторой длины в пределах умеренного растяжения и затем понижать температуру, поддерживая длину постоянной, то напряжение будет падать пропорционально понижению абсолютной температуры. Согласно ур. (XVII, 3), это означает, что в данном случае изменение внутренней энергии, связанное с этим напряжением, равно нулю. Следовательно, сила, стремящаяся сократить длину растянутого каучука, всецело обусловлена уменьшением энтропии его при растяжении. Иначе говоря, это означает, что гибкие цепи макромолекул имеют в растянутом каучуке меньшее число возможных конформаций, чем в нерастянутом. Ввиду того что внутренняя энергия каучука не изменяется при растяжении, затрачиваемая при этом работа должна целиком превращаться в теплоту и, следовательно, каучук должен при растяжении нагреваться это и подтверждается опытными данными. [c.568]

    Мы видели уже в гл. I, что большую часть времени связи хребта цепи проводят в положениях, соответствующих минимумам энергии и отвечающих одному транс- и двум гош-поворотным изомерам (ротамерам). По Волькенштейну [7, с. 169], развившему поворотно-изомерную теорию гибкости полимеров, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров внутреннее вращение при этом представляет собой переходы от одних к другим поворотным изомерам. Процесс растяжения полимера состоит в его поворотной изомеризации. Он сопровождается, во-первых, перефаспределенйем поворотных изомеров звеньев цепи без изменения их полного набора и, во-вторых, изменением набора поворотных изомеров, когда происходит переход от свернутых гош-изомеров к трамс-изомерам. Первое связано с изменением энтропии цепи, но не ее внутренней энергии, второе — с изменением обеих функций. [c.124]

    Многие исследователи считают ответственным за устойчивость дисперсных систем, стабилизированных полимерными макромолекулами, так называемый энтропийный фактор устойчивости, связанный с взаимодействием полимерных цепей друг с другом и с молекулами растворителя, при котором возникает стерическое отталкивание. В основном выделяют два фактора, вызываю1цие возникновение сил отталкивания [36, 226] потеря конфигурационной энтропии адсорбированных макромолекул при их сжатии в результате приближения второй поверхности (эффект ограничения объема) изменение взаимодействия полимер - растворители при взаимном проникновении или сжатии полимерных цепей (осмотический эффект). Установлено, что в хорошем растворителе преобладаюшлм является осмотический эффект [10]. [c.32]

    Значения таких термодинамических параметров жидкости, как энтропия, превышают соответствующие значения для находящейся с ней в равновесии кристаллической фазы. При этом разность указанных величин убывает с уменьшением температуры. Существует такая характерная температура (причем Т . < при которой эта разность становится равной нулю. Конкретные оценки, выполненные А. Миллером по известным экспериментальным данным для различных стеклуюпщхся низкомолекулярных жидкостей и полимеров, показали, что избыточная энтропия Д5 исчезает при температуре близкой к величине Твходящей в формулу (2.14) для температурной зависимости вязкости. Интересным исключением является полистирол, для которого Го = 323 К, а Tj = 281( 15)К. Это связано с предположением о том, что при Г о должна исчезать не полная избыточная энтропия Д5, а лишь ее конформационная составляющая s,S < Д 5, связанная с изомерными переходами при вращении групп, образующих полимерную цепь относительно связей в этой цепи. Для полиэтилена и полипропилена различие между и b.S пренебрежимо мало, но в полистироле вращение массивной фенильной группы относительно собственной оси дает существенный вклад в теплоемкость и, следовательно, в Д5, но не в Д -Поэтому для полимеров с массивными боковыми группами в цепи Вязкость должна становиться бесконечно большой, когда исчезает конформационная составляющая избыточной энтропии b.S — О, т. е. при Г = Го, однако из сказанного выше следует, что отсутствие сегментальных движений в цепи макромолекулы может быть не связано с требованием Д5 = О, которое удовлетворяется при более низкой температуре Га. [c.128]

    Макромолекулы могут находиться в различных конформациях. Переход от одник конформаций к другим происходит путем вращения звеньев цепи вокруг одиночных связей. В реальной молекуле вполне свободного вращения нет из-за внутри- и межмолекулярных взаимодействий (подробнее см. Гибкость макромолекул). Макромолекулу также можно приближенно рассматривать как смесь ее поворотных изомеров. Растяжение макромолекулы сопровождается 1) перераспределением поворотных изомеров звеньев цепи без изменения их полного набора 2) изменением набора поворотных изомеров при переходе от свернутых к т эакс-изомерам. Первый процесс связан с изменением энтропии цепи, но не ее внутренней энергии, второй — с изменением энтропии и внутренней энергии цепи. Таким образом, природа В. с. не является чисто энтропийной наряду с напряжением, обусловленным изменением энтропии, существует и энергетич. составляющая напряжения. При малых растяжениях, несмотря на изменение энергии, полное напряжение, действующее в цепи, достаточно точио описывается без учета этого изменения. Это связано с тем, что при растяжении макромолекулы возникает добавочная энтропийная сила, связанная с энтропией смешения поворотных изомеров. Увеличеиие числа мепее устойчивых поворотных изомеров увеличивает энтропию смешения и внутреннюю энергию, а увеличепие числа более устойчивых поворотных изомеров уменьшает энтропию смешения и внутреннюю энергию. Поэтому возникающая при растяжении энергетич. и добавочная энтропийная силы имеют противоположные знаки II при малых растяжениях компенсируют друг друга. [c.278]

    Оценки разностей энергий между различными конформациями макромолекул и амплитуд крути.тьных колебаний производились в ряде теоретических работ, в которых использовались те же полуэмпирические потенциалы взаимодействия валентно не связанных атомов, что и при оценке кристаллических конформаций цепей (см. 7). Наиболее детальные вычисления проведены для изотактического полипропилена (— Hj—СН (СНз)—) для которого, как и для остальных изотактических полимеров типа (— Hj— HR—) , гибкость цепи определяется разностью энергий между различными и одинаковыми конформациями соседних мономерных единиц, т. е. энергией деспирализации цепи , а также, конечно, амплитудами крутильных колебаний звеньев. Очевидно, что в изотактических цепях возможны два типа. стыков между отрезками правых и левых спиралей, т. е. между последовательностями (О", 120 ) и (—120", О"). Энергия первого стыка (—120°, 0° 0°, 120°), согласно оценке Н. П. Борисовой и Т. М. Бирштейн [ ], всего на 0,5 ккал/моль превышает энергию регулярной последовательности, зато энергия второго стыка (0°, 120° —120°, 0°) чрезвычайно велика из-за сильного отталкивания атомов Н ближайших несоседних групп —СН(СНз). Это отталкивание не исключает, однако, стыков второго типа, так как путем сравнительно небольшого изменения углов внутреннего вращения может быть достигнуто значительное уменьшение энергии, а деспирализация обусловливает рост энтропии цепи. С учетом принципа скрещенных связей и потенциалов ван-дер-ваальсова взаимодействия атомов С и Н, Борисова и Бирщтейн полз чили, что при валентных углах изотактического [c.129]

    Энтропийный вклад в термодинамическую агрегативную устойчивость можно определить, рассмотрев образование лиофильной системы или самопроизвольную пептизацию лиофобной системы аналогично образованию раствора. В общем случае не- обходимо учитывать наличие поверхностных слоев, которые могут состоять из противоионов, цепей макромолекул, радикалов ПАВ, принимающих самостоятельное участие в тепловом движении. Наиболее легко поддаются учету двойные электрические слои с их подвижными противоионами. В этом случае мицеллу можно рассматривать как молекулу полиэлектролита и, соответственно, рассчитать энтропию дисперсной системы как энтропию раствора электролита (энтропию смешения) s =—Л , Б 1по,—Л 2 Б1пах= [c.329]

    Важно отметить, что отношение RJd растет с возрастанием степени полимеризации N. Это происходит как в случае роста цепи в жесткой поре, где d = onst, так и в случае роста цепей в состоянии глобулы, когда / о N , а i/ N . Такая ситуация имеет место при протекании полимеризации в среде осадителя, при эмульсионной и в ряде случаев прививочной полимеризации. Снижение энтропии цепи с возрастанием N может приводить к дополнительному возрастанию энтропии полимеризации по мере роста цепи, что в свою очередь может привести в указанных случаях к термодинамическому ограничению роста макромолекул. Естественно, что выводы, полученные для полости сферической формы, качественно справедливы и для любой другой геометрии полостей. Интересно также отметить, что результаты, получаемые аналитически, вполне удовлетворительно согласуются с численными расчетами, выполненными методами Монте-Карло [227]. [c.140]

    Методы фракционирования полимеров разнообразны избирательная растворимость, сорбционная способность, действие силового поля (при ультрацентрнфугировании), оценка скорости диффузии, метод гель-хроматографии и др. Простейшим экспериментальным методом оценки ММР является фракционное осаждение полимера из раствора (добавлением осадителя, т. е. нераст-ворителя, понижением температуры). Например, если к раствору полимера добавлять постепенно осадитель, то сначала из раствора будут выделяться наиболее высокомолекулярные фракции, имеющие минимальную энтропию смешения и потому хуже растворимые. Добавляя осадитель малыми порциями и отбирая осадки, можно получить набор фракций, содержащих различные по длине цепи макромолекулы, а следовательно, и отличающихся молекулярной массой. Если попытаться оценить молекулярную массу каждой из этих фракций, то также получится некоторое среднее значение, хотя степень усреднения будет гораздо меньше. [c.38]

    Поскольку ориентация мезогенных групп должна приводить к уменьшению энтропии полимерной цепи, возникает вопрос о том, как боковые фрагменты влияют на ее конформацию. Недавно Уонг и Уорнер [68], а также Кунченко и Светогорский 132] смоделировали взаимодействия основной и боковой цепей для систем с различной жесткостью полимерной цепи и различной длиной боковых групп. В зависимости от изменения в соотношении этих параметров теория предсказывает изменение конформации макромолекул. Конкуренция между влиянием нематического поля и энтропией цепи разрешается за счет отклонения конформации цепи от статистического клубка. В зависимости от температуры, силы нематического взаимодействия и жесткости цепи последняя принимает стержнеобразную (вытянутую) или сплющенную (дискообразную) форму. [c.250]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    При увеличении степени диссоциации возрастает электростатическое отталкивание одноименно заряженных групп макромолекул, что приводит к существенному изменению их конформации в растворе, а именно цепи, свернутые в клубок, распрямляются и стремятся принять форму, приближающуюся к линейной. В результате этого увеличивается эффективный размер молекул и существенно изменяются физико-химические свойства растворов, например, возрастает вязкость, изменяется интенсивность светорассеяния. При уменьшении степени диссоциации макромолекулы, наоборот, сворачиваются, приобретая конформации с наибольшим значением энтропии в системе. Если pH раствора поддерживают постоянным, то в результате электростатического взаимодействия ионизированной части полярных групп и теплового двилсения уста [(а вливаются определенные конформации молекул. Состояние равновесия зависит от величины заряда полииона, состава раствора, температуры. [c.151]

    Термодинамически самопроизвольное растворение высокомолекулярных соединений сопровождается уменьшением энергии Гиббса (AG = АН — TAS < 0). Энтальпия смешения АН отражает энергетические изменения при взаимодёйствии молекул полимера и растворителя, энтропия смешения AS— изменения во взаимном расположении макромолекул и их конформациях. При растворении полимеров с гибкими цепями выделение теплоты обычно невелико (АН 0), но при растворении существенно возрастает энтропия системы (AS >0). При растворении полимеров с жесткими, обычно полярными, цепями число возможных конформаций в растворе резко уменьшается и величины энтропии смешения очень невелики. Одновременно для этих полимеров возрастает выделение теплоты. [c.439]

    На первой стадии происходит специфическое взаимодействие (сольватация) НМС и ВМС при этом выделяется теплота, т. е. АН < О, а AS О или даже Д5 < О (в тех случаях, когда сольватация приводит к увеличению жесткости цепи). Однако АЯ > 1ГА5 и AG С 0. На второй стадии теплота сольватации почти или совсем не выделяется АН л 0), но зато возрастает энтропия, поскольку разрыхление сетки и связанное с ним частичное освобождение макромолекул увеличивает ЧИСЛО конформаций Т AS > О, AG —Т AS < 0. Росту 5 спо- [c.331]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    НАБУХАНИЕ полимеров, увеличение объема (массы) полимерного тела в результате поглощегая жидкости или ее пара при сохранении им св-ва нетекучести (т.е. форма образца обычно не изменяется). Характеризуется степенью набухания-отношением объема (массы) набухшего полимера к его исходному объему (массе) степень набухания увеличивается во времени, постепенно приближаясь к равновесному значению. Поглощение жидкости полимером ограничивается или конечным содержанием аморфной фазы в частично закристаллизованном полимере, или наличием поперечных хим. связей между макромолекулами (сшивками) в сетчатых полимерах. В первом случае степень набухания, как правило, невелика даже при относительно большом содержании аморфной фазы (Н. до 2-3-кратного объема), во втором-при малом числе поперечшлх хим. связей полимер может поглощать очень большое кол-во жидкости, иногда значительно (в десятки раз) превосходящее массу самого полимера. Предел Н. обусловлен при этом изменением энтропии из-за нарушения равновесной конформации отрезков цепи между узлами сетки при изменении объема полимера во время Н. [c.164]

    Теория, позволяющая определить пределы совместимости полимера и р-рителя в зависимости от мол. массы раство-репного в-ва и т-ры, развита П. Дж. Флори и М. Хаггинсом в 40-х гг. 20 в. Энтропия смешения системы полимер-р-рнтель рассчитывалась на основе решеточной модели (см-Жидкость), согласно к-рой жидкость м.б. представлена квазирешеткой, в каждой ячейке к-рой может помещаться либо молекула р-рителя, либо равный ей по размерам участок макромолекулы, что связано с конкретной конформацией цепи. Соответственно при расчете энтропии смешения принимаются во внимание лишь допустимые конформации, а при малой молярной доле полимера в р-ре возможны большие значишя. Наличие отличной от [c.189]


Смотреть страницы где упоминается термин Энтропия цепи макромолекулы: [c.237]    [c.201]    [c.28]    [c.37]    [c.369]    [c.63]    [c.319]    [c.318]    [c.42]    [c.361]    [c.77]    [c.115]   
Технология синтетических пластических масс (1954) -- [ c.94 ]




ПОИСК







© 2024 chem21.info Реклама на сайте