Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент ширины распределения

    На практике используют также три других коэффициента ширины распределения  [c.340]

    Основным методом спектрометрии ядерных излучений является измерение ионизационного или сцинтилляционного эффекта, производимого первичной или вторичной заряженной частицей, причем хорошие результаты дают лишь относительные измерения энергии частиц. Абсолютные измерения требуют определения с малой погрешностью энергии, затрачиваемой на создание одной пары ионов в ионизационных камерах, электроннодырочной пары в полупроводниковых детекторах, фотона люминесценции в сцинтилляторах. Необходимо еще знать коэффициенты усиления, а для сцинтилляционных счетчиков — и конверсионную эффективность фотокатода, и вероятность попадания фотонов на фотокатод, и т. д. В то же время при относительных измерениях энергию заряженных частиц можно определить с точностью в несколько раз большей, чем ширина распределения амплитуд импульсов, т. е. даже в сцинтилляционных спектрометрах доступно сравнение энергии заряженных частиц с погрешностью около 1 %. [c.95]


    Средние значения коэффициентов неравномерности распределения тепловых потоков по ширине экранов [c.393]

    Значение коэффициента распределения нагрузки по длине контактных линий /С р следует назначать в соответствии с рекомендациями [82] в зависимости от коэффициента ширины зубчатого венца ярб<г = Ь ,/с ги1 и расположения зубчатых колес относительно опор валов (консольное расположение шестерни, симметричное расположение опор и др.). Учитывая высокую податливость и хорошую прирабатываемость пластмассовых зубчатых колес, для оценочных приближенных расчетов рекомендуется принимать коэффициент, учитывающий динамические нагрузки i =l,l—1,3 [82]. [c.219]

    Помимо кривых распределения и функций, представленных выше, для описания распределения по молекулярным весам в полимере используют также отдельные числа или коэффициенты. Выше было показано, что распределения значительного количества полимеров могут быть описаны функциями двух параметров, но лишь один из этих параметров связан непосредственно с шириной распределения. Следовательно, параметры 6, г и р можно применять в качестве коэффициентов ширины распределепия по молекулярным весам. [c.340]

    Коэффициент, учитывающий распределение нагрузки по ширине венца. ........... [c.352]

    Эта формула не учитывает влияния центробежных сил, вызванных искривленностью канала. Как показано выше, теоретическое распределение относительных скоростей по ширине канала в плоскости вращения описывается уравнением (3. 13). Так как величина Аси тем больше, чем больше градиент относительной скорости, то для случая обратно загнутых лопаток (Ра, <90°), где радиус кривизны канала положительный, кривизна лопатки уменьшает градиент скорости, а вместе с ней и величину A . В случае же лопаток, загнутых вперед (Рал > 90°), радиус кривизны лопатки отрицательный и кривизна лопатки увеличивает градиент скорости. Это значит, что при <90° уравнение (3. 27) дает при прочих равных условиях несколько заниженное значение ц. При Ра > > 90° эта формула несколько завышает коэффициент fi. Здесь также не учитывается влияние косого среза канала, который при отсутствии вращения дает отклонение выходящей струи в сторону укороченной стенки. Кроме того, здесь не учитываются толщина лопатки, а также явления, связанные с процессом выравнивания давления на периферии. [c.68]

    Для увеличения коэффициента теплопередачи, помимо обычных приемов повышения а) и аг, уменьшают толщину стенки камеры н слоя угля. Обычно толщина стенки, выполненной из динасового кирпича, около 0,1 м, а ширина камеры принимается равной 407— 410 мм. Поверхность теплопередачи f зависит от размеров камеры. Длина камеры ограничивается статической прочностью простенков, трудностью удаления кокса выталкивателем, сложностью равномерного распределения газов в обогревательном простенке. Длина камеры примерно 14 м. Высота камеры определяется в основном условиями равномерного обогрева ее по высоте. С этой точки зрения удовлетворительные результаты получаются при высоте камеры около 4,3 м. [c.41]


    Во многих случаях локальные изменения коэффициентов теплоотдачи зависят не только от координаты вдоль поверхности х (или радиальной г), но также и от перпендикулярной ей координаты у (рис. 3), а именно в случае, когда газ не может прямо подниматься вверх в промежутке между соплами, а течет симметрично в обе стороны (параллельно щелям в направлении у) по всей ширине материала. Ясно, что этот выходящий поток влияет на все поле потока. Чем меньше отношение выходной площади потока Ра (заштрихованная площадь па рис. 3) к площади выходного поперечного сечения сопла В1 (для щелевых сопл), тем больше выходная скорость потока и менее однородно распределение коэффициентов теплоотдачи по ширине поверхности. Это влияние условий на выходе потока в деталях рассматривается в [16]. [c.269]

    В основу определения физико-химических характеристик с помощью газовой хроматографии положена известная функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического пика. Первые представляют собой функцию коэффициента распределения или величины адсорбции, что позволяет определять коэффициенты активности, термодинамические функции адсорбции или растворения, структуру изучаемых соединений и другие характеристики газообразных, жидких и твердых веществ. [c.160]

    Характеристическое поглощение или излучение атомов, соответствующее переходам атомов из одного состояния в другое, по ряду причин не является строго монохроматическим, а характеризуется некоторым распределением коэффициента поглощения или интенсивности излучения относительно центральной частоты этого перехода (рис. 3.33). Основными параметрами такого распределения служат или I в центре линии и ширина линии на половине ее высоты Ау. Основными факторами уши-рения спектральных линий являются конечное время жизни возбужденных состояний атомов (естественное уширение), тепловое движение атомов относительно оси наблюдения (э ф -фект Допплера), столкновения атомов между собой и с посторонними частицами (эффект Лорентца) и ряд других эффектов. [c.139]

    Если металлы, образуя твердые растворы, при ширине области гомогенности до 10 вес.% заметно не изменяют своих свойств, то полупроводники чувствительны к изменению состава в пределах, гораздо, меньших (даже до 10 %), и их диаграммы надо показывать в гораздо больших масштабах. При такой чувствительности свойств (особенно электрофизических) к изменению состава полупроводники почти всегда придется считать твердыми растворами переменного состава, потому что очистка веш,еств до 10 % очень затруднительна. На рис. 52-а. этот важный участок диаграммы изображен в крупном масштабе по оси абсцисс и в уменьшенном — по оси ординат. Видно, чт растворимость сурьмы в твердом германии Х при некоторой температуре Тх и также при 590° С, хотя и мала, но все же не равна нулю, а максимальная растворимость еще несколько больше (Хм). Очень важно отношение содержания примеси в твердой фазе к содержанию той же примеси в жидкой фазе при данной температуре Хз. Это отношение представляет собой коэффициент распределения (гл. 1, 16) или коэффициент сегрегации примеси К- Хз и Х/. находятся по точкам пересечения изотермы, отвечающей данной температуре, с линиями ликвидуса и солидуса. (Равновесный коэффициент К. для сурьмы в германии при температуре кристаллизации последнего можно считать 0,003 [45].) [c.143]

    Киселев и Щербакова (1961) смогли изготовить однородные, правильной формы носители также на основе силикагеля. В первоначальной форме силикагель, состоящий из водной кремневой кислоты, обладает очень большой поверхностью и имеет весьма мелкие поры (см. табл. 2). Объясняющаяся этим адсорбционная активность со всеми ее неприятными последствиями (асимметричность пиков, зависимость величин удерживания от величины пробы и т. д.) обычно препятствует применению силикагеля в качестве носителя. В отдельных случаях влияние носителя на коэффициенты распределения может оказаться полезным, по многочисленные недостатки все же мешают общему его применению. Однако для изготовления носителя, не зависящего от нагрузки, силикагель вследствие своей химической однородности был бы более пригоден, чем, например, кизельгур, содержащий примеси (соединения Fe, Al, Са, Mg), если бы удалось уменьшить его большую поверхность, расширить мелкие поры, достичь равномерного распределения пор и дезактивировать группы Si — ОН. Этого сумели достичь Киселев и Щербакова (1961) при помощи обработки силикагеля водой в автоклавах с последующим замещением групп ОН группами 031(СНд)з. Такой материал в значительной степени инертен (Киселев, 1963), обладает однородной поверхностью (ширина пор может быть увеличена до 0,5-10" мм) и хорошей механической прочностью. [c.89]

    Величину ( 2 — ti) = 2Ьн, требующуюся для определения поправочных коэффициентов, часто нельзя измерить с необходимой точностью. Ширину пика можно определить точнее из площади и высоты пика при помощи гауссовской функции распределения. [c.308]


    Интересные данные были получены при исследовании распределения коэффициента избытка воздуха и потерь тепла от химического и механического недожога по ширине топочной камеры на расстоянии около б м (по высоте) от горелки. Мазут с вязкостью 4° ВУ распыливался в этих опытах одной механической форсункой производительностью около 5 т/ч при давлении 16 кГ/см и сжигался с тепловым напряжением активного объема [c.176]

    На рис. 131 показаны приспособления, обеспечивающие равномерность распределения электрического поля по плоской поверхности [52] двухэлектродная ячейка с экраном, распространяющимся на катод и анод и обеспечивающим равномерность электрического поля на катоде и аноде (рис. 131, а) одноэлектродная ячейка с экраном по высоте не меньше диаметра (ширины) покрываемой поверхности (рис. 131, б) ячейка с экраном, высота которого может быть уменьшена в 3—5 раз за счет выступающих козырьков над деталью (рис. 131, в) ячейка с экраном, позволяющим изолировать контрольный поясок на изделии, четко выявить высоту слоя металла (рис. 131, г) ячейка с деталью в дополнительном металлическом катоде при необходимости соблюдения точного размера по пояску детали (рис. 131, 5), в противном случае из-за различия температурных коэффициентов расширения металла и диэлектрика линейные размеры и толщина слоя изменяются ячейка с уменьшенной площадью дополнительного катода благодаря установке непроводящего экрана (рис. 131, е) ячейка с углублениями, пазами, щелями, сквозными отверстиями, изолированными неметаллическими вставками, например отрезками полимерных трубок, рулончиками целлулоида (рис. 131, ж) стальные и свинцовые заглушки, установленные в отверстиях детали для сохранения равномерного слоя металла по краю отверстия (рис. 131, з). [c.258]

    Следует еще раз подчеркнуть, что, поскольку а является отношением (обычно а>1) двух удельных коэффициентов распределения, он непосредственно связан с хроматографическим процессом, в котором молекулы компонентов образца динамически распределены между подвижной и неподвижной фазами. Этот процесс распределения в конце концов определяет относительное положение каждого растворенного вещества (максимум пика) на кривой элюирования. Ширина пика не зависит от коэффициента разделения а. [c.22]

    Для расчета распределения латексных частиц по объемам в случае быстрого обрыва был использован статистический подход [41, 42]. Причем если в более ранней работе [41] допускалось, что во все частицы попадало одинаковое число ра1Дикалов, то позднее [42] это ограничение было снято. На основании расчетов, приведенных в этих двух работах, можно сделать вывод об увеличении дисперсии распределения частиц латекса по размерам в ходе процесса эмульсионной полимеризации, Онако если характеризовать ширину распределения F(V,i) коэффициентом вариации, равным отношению дисперсии этого распределения к его среднему значению, то эта величина будет со временем уменьшаться. Аналогичные выводы следуют из решеиий соответствующих кинетических уравнений для случая быстрого обрыва в теории Смита—Юэрта [39, 40]. Попытки проведения расчета распределения латексных частиц по размерам для случая медленного обрыва были предприняты в работе О Тула [40] . [c.83]

    О составе смеси судят по хроматограммам, используя высоты или площади пиков. Ширина пика с характеризует размывание полосы. Это размывание определяется разными причинами. К ним относится продольная диффузия. Эта диффузия для движущейся полосы такая же, как и для покоящейся. Одпако наличие сорбции уменьщает коэффициент диффузии в Г раз, так как емкость единицы объема возрастает соответственно. Согласно уравнепию (XI.18), распределение концентрации в полосе с учетом уменьптения О описывается уравнением [c.404]

    Каждая отдельная дисперсия вносит свой вклад в суммарную дисперсию, т. е. в расширение хроматографической зоны. Приведенные выражения позволяют понять характер влияния выбора параметров хроматографического процесса на ширину зоны, т. е. содержат в себе очень важную практическую информацию. Наг рпмер, легко видеть, что с увеличением диаметра гранул зона расширяется как за счет неоднородности тока жидкости, так и особенно за счет неравновесности распределения молекул вещества по объемам подвижной и неподвижной фаз. Эта неравновесность будет сказываться тем меньше, чем больше значения коэффициентов диффузии и Оа, т. е. чем легче диффундирует вещество. С другой стороны, облегчение диффузии (увеличение и О ) влечет за собой раси]и-рение зоны за счет продольной диффузии (особенно в подвижной фазе). Скорость элюции и) также влияет двояким образом. С ее увеличением вклад продольной диффузии в расширение зоны умень-шается, зато сильнее сказываются все неравновесности распределения. Наконец, все факторы без исключения увеличивают дисперсию зоны пропорционально длине колонки L. Отсюда следует, что движение хроматографической зоны вдоль колонки в неидеальных условиях связано с непрерывным расширением зоны. Это должно нас насторожить в отношении целесообразности увеличения длины колонки. [c.29]

    Здесь индекс Т означает, что используется шляпообразный профиль, аг представляет собой коэффициент пропорциональности, характеризующий интенсивность подсасывания, а через Р = = 2пЬт обозначен периметр сечения факела. Следует отметить, что если принять форму профилей в виде распределений Гаусса, то коэффициент подсасывания и ширина факела уменьшаются [c.129]

    Таким образом, при линейном распределении температуры существует полоса бесконечной ширины. В действительности отклонение от линейного распределения температуры теперь проявляется в виде некоторой разности , т. е. в виде нескольких интерференционных полос. В качестве следующего шага представим, что ца исследуемое поле наложено дополнительное поле полос (вертикальные полосы). Тогда любое отклонение от линейного распределения показателя преломления (температуры) приводит теперь к деформации вертикальных полос, подобной показанной на фиг. 82. Это свидетельствует о вкладе излучения в теплообмен в жидкости. В жидкостях с высоким коэффициентом поглощения, таких, как вода, метанол, этанол, проианол, этот эффект не обнаружен полосы сохраняются вертикальными при условии, что dnIdT = onst. Прием с наложением поля полос был использован для получения качественного представления о характере распределения темиературы. Для количественных оценок использовались интерферограммы, полученные при настройке интерферометра на полосу бесконечной ширины без компенсации. [c.216]

    Для расчета коэффициента. Р21 — Pl2 необходимо знать, как распределены значения АН (z) в граничных слоях. Рассмотрим в первую очередь наиболее простой случай широких щелей, ширина которых много больше толщины граничного слоя с измененной энтальпией. В этом случае можно принять распределение скоростей в слое hg линейным v (z) = —2hzAPIr l. Учитывая то, что вклад в интеграл уравнения (Х.82) дадут только граничные слои толщиной h , получим [c.324]


Смотреть страницы где упоминается термин Коэффициент ширины распределения: [c.136]    [c.88]    [c.191]    [c.180]    [c.38]    [c.450]    [c.158]    [c.154]    [c.228]    [c.154]    [c.373]    [c.144]    [c.392]    [c.45]    [c.59]    [c.143]    [c.231]    [c.297]    [c.138]    [c.99]    [c.178]    [c.213]    [c.277]    [c.169]    [c.285]    [c.205]    [c.638]   
Фракционирование полимеров (1971) -- [ c.350 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент распределения



© 2024 chem21.info Реклама на сайте