Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактивы длл колориметрического определения, меди

    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]


    Азот можно определить в отгоне (в аппарате для микроопределений по Къельдалю) в слабый раствор кислоты в таком случае качество стекла в холодильнике значения не имеет, так как стекло отдает нелетучие щелочи, а реактив дает окрашивание только с аммиаком. Однако проще брать для колориметрического определения не отгон, а прямо минерализованную смесь, получающуюся в колбе после сжигания. В таком случае сжигание нужно вести не больше как с 1 мл крепкой серной кислоты, а лучше с 0,5 ее или с 1 мл 50%-ной серной кислоты, или нейтрализовать избыток кислоты щелочью для ускорения сжигания брать только 1 каплю 5%-ной сернокислой меди (метод Коварского), так как избыток кислоты мешает развитию окраски, а избыток. меди мешает колориметрированию и дает осадок с реактивом Несслера. [c.132]

    Для колориметрического определения меди предложено большое количество реактивов. Наиболее часто рекомендуются дитизон [11, 50, 74—76] и диэтилдитио-карбаминат натрия [11, 74—81]. Дитизон — более чувствительный реактив. Колориметрическому определению меди с дитизоном мешают большие количества железа, а также ртуть и серебро. Последние два элемента в элементарном боре не присутствуют. Определению меди с диэтилдитиркарбаминатом мешают марганец, никель, кобальт и большие количества железа. [c.136]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]


    Применение. Гетероциклические соединения широко применяются в аналитической химии. В качестве примеров можно привести а,а-дипиридил — реактив на серебро, кадмий, молибден, двухвалентное железо, а также реактив для определения витамина Е нитрон — реактив на азотную кислоту 1,2,3-бензотриазол — реактив на медь хинальдиновая кислота используется для определения кадмия, меди, урана, цинка и колориметрического определения железа пиперидин и пиррол — реактивы на альдегиды  [c.47]

    Тионалид образует с большинством металлов группы сероводорода очень трудно растворимые белые или бледно окрашенные соли типа Me°( i2HioONS)2 . Реактив применяется главным образом для весового или объемного определения этих металлов, но его используют и для непрямого колориметрического определения, основанного на восстановлении фосфорномолибденовольфрамовой кислоты тионалидом, связанным в ме-таллокомплексе (см. определение таллия, стр. 479). Было описано нефелометрическое определение меди, ртути и мышьяка основанное на применении тионалида . [c.120]

    Медь раньше определялась осаждением в виде сульфида с последующим взвешиванием в виде окиси или колориметрическим сравнением однако при малом содержании в породах для точной работы нужна была очень большая навеска, например 20—50 г. Принятый автором для силикатного анализа крайне чувствительный колориметрический метод определения меди органическим реактивом диэтилдитиокарбаматом натрия делает возможным очень точное определение 0,001—0,25% СиО из навески 2 г [36]. Этот органический реактив дает с медью в слабоаммиачном растворе желтую окраску. К счастью, другие металлы, дающие с этим реактивом окраску, в том числе висмут, дающий тот же цвет, могут быть удалены предварительным осаждением аммиаком. Соли таллия вызывают сильное помутнение, так что минералы, разделенные в жидкости Клеричи, необходимо до исследования очень основательно промывать горячей водой. Хром, цинк, никель и марганец дают с реактивом слабую муть и неполно осаждаются аммиаком, но содержания их в породах слишком малы, чтобы мешать определению. Органический реактив чрезвычайно чувствителен к железу, дающему бурый цвет, так что полное удаление нежелательных компонентов, особенно железа, осаждением аммиаком надо производить очень тщательно. [c.134]

    Существует огромное количество органических соединений, дающих чувствительные цветные реакции с медью, и описано много колориметрических методов для определения последней. Двумя наиболее важными колориметрическими реактивами являются дитизон и диэтилдитиокарбаминат натрия. Дитизон — более чувствительный реактив, но ртуть, серебро и большие количества железа препятствуют его прямому применению, и необходимо принимать специальные меры, если присутствуют эти элементы. Метод определения посредством диэтилдитиокар-бамината применим в присутствии умеренных количеств железа так же, как и в присутствии ртути, а возможно и серебра. С другой стороны, марганец, никель и кобальт мешают при диэтилдитиокарбаминатном методе, но не мешают при дитизоновом. Висмут мешает в обоих методах, но в дитизоновом меньше, чем в диэтилдитиокарбаминатном. Дитизоном определяются меньшие количества меди, и потому при определении следов этот реактив часто имеет преимущество. Кроме того, дитизоновый метод можно применить к кислым растворам, и поэтому [c.308]

    Главная трудность в турбидиметрии и нефелометрии — определение условий, при которых можно получить воспроизводимые по свойствам суспензии. На поглощение или рассеяние света могут резко влиять небольшие изменения в способе добавления осадителя, в температуре и времени, проходящем до наблюдения. От этих факторов зависит первоначальный и последующий размеры частиц осадка. Кроме того, большое влияние могут оказывать электролиты. Малорастворимые вещества сильно отличаются по их пригодности для применения в турбидиметрии и нефелометрии. Желательно, чтобы осадок был очень мало растворим, чтобы его образование шло быстро и чтобы он был окрашен или непрозрачен (последнее — для турбидиметрии). Оптическая плотность коллоидных растворов часто изменяется линейно в зависимости от концентрации вещества в широких пределах, особенно если вещество сильно поглощает свет. Это соотношение не соблюдается при очень малых концентрациях. Коллоидные растворы теллура, получаемые осаждением хлоридом олова (И), коллоидное золото (стр. 459), соединение серебра с диэтиламинобензилиденроданином, ферроцианид меди и суспензии сульфидов многих тяжелых металлов показывают линейное соотношение в значительной области концентраций. При определении на суспензиях хлорида серебра получается более сложная форма кривой экстинкция—концентрация (стр. 735). При колориметрических определениях, основанных на образовании лаков, при которых реактив (краситель) адсорбируется на поверхности осадка с изменением окраски, часто обнаруживается, что при низких концентрациях определяемого элемента имеется практически линейное соотношение между экстинкцией и концентрацией. Этого и следовало ожидать, так как при большом избытке реактива поверхность осадка насыщается им, и тогда в определенных пределах интенсивность окраски пропорциональна концентрации коллоидного осадка. Если соотношение [c.111]


    Тионалид дает труднорастворимые белые или светлоокрашенные внутрикомплексные соединения типа Ме (С12НюОЫ5)2 с большинством металлов сероводородной группы Реактив используется главным образом для весового или объемного определения этих металлов, но находит также применение в косвенном колориметрическом анализе, который основан на восстановлении фосфорновольфрамомолибденовой кислоты тионалидом, связанным в металлокомплексе (см. определение таллия, стр. 748). Описано нефелометрическое определение меди, ртути и мышьяка при помощи тионалида. Тионалид, подобно сероводороду, осаждает медь, серебро, золото, ртуть, олово, мышьяк, свинец, висмут, платину, палладий, родий и рутений из разбавленных растворов в минеральной кислоте. Эти осадки чрезвычайно труднорастворимы (см. табл. 29). [c.168]

    Humposo-R-соль (1-нитрозо-2-окси-3,6-нафталин-динатрийсульфонат) — важный колориметрический реактив для определения кобальта (стр. 371) он используется также для определения железа(П), с которым дает зеленое окрашивание в щелочной среде. Медь и никель при рН< 7 дают яркие желтокоричневые окраски. Реакции нитрозо-К-соли подобны реакциям нитрозо-нафтола, за исключением того, что комплекс является анионом и поэтому не может быть экстрагирован органическими растворителями. [c.178]

    Другой недостаток этих методов — часто небольшая устойчивость окрашенных органических продуктов. Для иллюстрации можно привести несколько примеров. Бензидин дает непрочную зелено-голубую окраску с перманганатом в кислой среде и голубую окраску с четырехвалентным иридием. о-Толидин в кислой среде окисляется трехвалентным золотом до желтого продукта многие другие сильные окислители дают такой же цвет. Свинец можно определить анодным разложением двуокиси с последующим растворением ее в уксуснокислом растворе тетраметилдиаминодифенилметана с образованием окрашенного в голубой цвет дифенилметана. Лейкоосно-вание малахитовой зелени служит для определения золота и иридия тет-раметил-и-фенилендиамин можно рекомендовать как реактив на осмий. Дифениламин используется для колориметрического определения вана-дия(У). Фенолфталин, образующийся при восстановлении фенолфталеина цинком в растворе едкого натра, дает розовое окрашивание с очень малыми количествами меди в присутствии перекиси водорода. [c.182]

    Определение примеси аце гилеиовых соединений. Примесь ацетиленовых соединений в бутадиене может быть количественно определена колориметрически по образованию окрашенной коллоидальной взвеси апетиленида меди. Для определения по этому методу применяют реактив Илосвая [48], который состоит из 0,75 г кристаллической полухлористой меди, 1,5 г хлористого аммония, 3 мл 20-процентного раствора аммиака и 2,5 г солянокислого гидро-ксиламина. [c.40]

    При исследовании возможности разработки количественного метода было найдено, что никель-5-нитросалицилово-альдегидные производные нерастворимы в большинстве растворителей и поэтому не могут быть определены колориметрически. При замене соли никеля солью меди и нитросалицилового альдегида салициловым удалось получить производные первичных аминов, растворимые в некоторых органических растворителях. Был приготовлен реактив, содержащий салициловый альдегид, ацетат меди (или хлорид меди) и триэтаноламин в метаноле. Первичные амины образуют с этим реактивом растворимый окрашенный продукт, имеющий максимум поглощения при 445 нм. Вторичные амины мешают определению, так как они также дают окрашенные продукты. Для специфического анализа первичных аминов был приготовлен водный реактив, в котором большинство продуктов реакции первичных аминов нерастворимо. Их извлекают дии-зопропиловым эфиром или бензолом и анализируют колориметрическим методом. При этом оказалось, что окрашенные продукты реакции не обнаруживают максимум поглощения в видимой части спектра. Несмотря на это, была сделана попытка провести анализ, измеряя оптическую плотность окрашенного раствора при 430 нм. Была построена калибровочная кривая, которая оказалась прямой, за исключением начальной ее части. Если к триэтаноламину, входящему в состав реактива, добавить 0,01% моноэтаноламина, то получается прямолинейная зависимость, соответствующая закону Ламберта — Бера во всем интервале концентраций. Однако вторичные и третичные амины вызывают смещение кривой поглощения. Поэтому необходимо было найти такой способ, при котором максимум поглощения находился бы в видимой области и не зависел от присутствия вторичных или третичных аминов. [c.441]

    Наилучшим колориметрическим методом определения малых количеств оло1 а, по-видимому, является метод, основанный на реакции его с дитиолом (1-метил-3,4-димеркаптобензолом). Этот реактив образует с оловом (II) розово-красный осадок, а при малых количествах олова— коллоидный раствор, для стабилизации которого прибавляют агар-агар. Мешают висмут, медь, серебро, ртуть, молибден, ванадий, теллур, мышьяк, сурьма, германий, большие количества хрома, никеля и кобальта. Доп. ред.  [c.344]

    Для определения содержания ацетилена в жидком кислороде и жидкости испарителя, необходимого для обеспечения безопасной работы воздухоразделительных аппаратов, используют колориметрический метод для этого поглощают газообразный ацетилен специальным реактивом — раствором Илосвая, который окрашивается в красный цвет. Реактив Илосвая приготовляют из аммиачного раствора азотнокислой меди, прибавляя к нему солянокислый гидроксиламин. [c.360]

    Нвтрозо-Д-соль (натриевая соль 1-нитрозо-2-нафтол-3,6-ди-сульфокислоты) является наиболее важным колориметрическим реактивом для определения кобальта (стр. 272). Этот реактив был применен также для определеиия железа (II), с которым в щелочной среде он дает зеленую окраску Медь и никель дают с этим реактивом интенсивную желто-бурую окраску, если pH меньше 7. [c.123]

    Дитиокарбаматы образуют с медью(И) интенсивно окрашенные в коричневый цвет хелаты, нерастворимые в воде, которые могут экстрагироваться различными органическими растворителями. Диэтилдитиокарбамат натрия — многократно проверенный реактив на медь. Недавно (1952 г.) стало известно, что дибензилдитиокарбаминовая кислота (в виде соли цинка или солей щелочных металлов) является хорошим колориметрическим реагентом для определения следов меди. Использование этих двух соединений обсуждается ниже Дибензилдитиокарбамат может со временем вытеснить диэтилдитиокарбамат. [c.398]


Смотреть страницы где упоминается термин Реактивы длл колориметрического определения, меди: [c.403]    [c.66]    [c.123]    [c.585]   
Смотреть главы в:

Ассортимент реактивов на медь -> Реактивы длл колориметрического определения, меди




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение

Медь, определение

Определение меди колориметрически



© 2025 chem21.info Реклама на сайте