Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение металлов из галогенидов восстановлением

    Важнейшим способом получения металлов ПА-подгруппы, имеющих малые алгебраические величины стандартных электродных потенциалов, является электролиз их расплавленных хлоридов (или других галогенидов) иногда для понижения температур плавления к ним добавляют хлориды щелочных металлов. Например, бериллий получают электролизом расплавленной смеси фторида бериллия и фторида натрия, кальций и стронций — электролизом смесей хлоридов и фторидов этих металлов. Магний помимо электролиза расплавленной смеси хлоридов магния и калия получают другими способами восстановлением доломита СаСОз-М СОз ферросилицием или кремнием, восстановлением оксида магния углем в электрических печах. Барий принято получать металлотермическим (алюминотермическим) способом. [c.294]


    О получении металлов, сплавов, соединений и полупроводниковых материалов восстановлением галогенидов водородом на нагретой поверхности. [c.255]

    Было показано, что иногда удобным методом получения металла является восстановление его галогенида, как, например, в процессе Кролля при производстве титана. Тетрахлорид титана получают из природной двуокиси титана (рутила) реакцией [c.343]

    Следующий сухой метод получения металлов — восстановление в процессе термического разложения некоторых их соединений, главным образом галогенидов и наиболее часто иодидов почему )  [c.585]

    Производство металлического бериллия. В настоящее время процесс получения металлического бериллия заключается в превращении очищенной окиси бериллия во фторид или хлорид с последующим электролизом или восстановлением галогенидов кальцием, магнием или другим подходящим металлом. Непосредственное восстановление окиси нецелесообразно вследствие того, что она имеет высокую точку плавления и высокую свободную энергию образования по сравнению со свободной энергией образования окислов металлов-восстановителей. [c.202]

    Для элементов левее подгруппы ванадия нет никакого выбора приходится остановиться на восстановлении металлов. Окисел, как исходное вещество, в этом случае уже неприменим, так как окислы щелочных металлов не восстанавливаются, а окислы магния и кальция нельзя выделить из восстановленной смеси. Другие принимаемые во внимание металлы практически все образуют твердые растворы или сплавы, не говоря уже о том, что из-за растворимости кислорода в титане, цирконии и бериллии восстановление их окислов вообще невозможно. Остается только одно исходное вещество — галогенид его можно легко восстановить натрием или магнием. Этот способ представляется удобным общим способом получения металлов. Наряду с этим методом можно получать металлы и электролизом расплавленных солей. Последний является практически единственным методом получения щелочных и щелочноземельных металлов. [c.343]

    Получение чистого ванадия сопряжено с большими трудностями ввиду повышенной реакционной способности металла при высокой температуре по отношению к кислороду, азоту и некоторым другим элементам. Большинство методов получения ванадия сводится к восстановлению его окислов или галогенидов (главным образом хлоридов) различными восстановителями. Распространенный способ получения металла — восстановление пятиокиси кальцием (1) или алюминием (2) в присутствии флюсов (хлорид кальция и др.)  [c.233]


    Химически чистый металл для реакторов—так называемый уран X. ч. р.—из технических концентратов получают в большинстве случаев на специализированных рафинажных предприятиях, работающих по однотипной схеме с использованием магнийтермического восстановления четырехфтористого урана. Некоторые характеристики возможных многочисленных способов получения металлического урана восстановлением окислов или галогенидов щелочными или щелочноземельными металлами приведены в табл. 12 (стр. 232).Практически применяется способ восстановления четырехфтористого урана металлическим магнием, так как в этом процессе получается плотный металлический уран х. ч. р. и образуются шлаки с относительно низкой температурой плавления. [c.230]

    Для получения низших галогенидов в водных растворах применяются различные восстановители порошкообразные металлы (например, цинк и медь), амальгамы, гидразин и др. Весьма эффективным методом является также восстановление на катоде. [c.198]

    В. применяют для восстановления Ре из руд (С, Н2, водяной и прир. газы, СО, пропан, бутан) при получении цветных и редких металлов в процессах металлотермии (С, 81, А], Ыа, Са, М Ьа) при выделении (цементации) цветных металлов из водных р-ров нх солей (Ре, 2п) прн получении металлов, их низших оксидов и галогенидов и при хим. осаждении металлов, нитридов и карбидов из газовой фазы (Н , ЫНз, СН и др.) при проведении разл. хим. процессов в р-рах (8пС12, РеЗОд, Н ЗО , ЫНаОН, НСООН, Н З и др.) в орг. синтезе (Н , Ыа, 2п, Ь1[АШ4], Ка[ВНд], В Н и др.) как проявляющие в-ва в фотографии (гидрохинон, амидол, метол, фенидон и др.). В хим. источниках тока Е (Ь1, Ыа, 7п, нек-рые др. металлы, а также сплавы) входят в состав анодов. [c.429]

    Восстановление галогенидов урана щелочными или щелочноземельными металлами. Как указывалось выше, металлический уран был получен Пелиго [67] восстановлением тетрахлорида урана металлическим калием. С тех пор часто применяли восстановление галогенидов урана щелочными или щелочноземельными металлами. Полученный Пелиго металл содержал примесь платины, так как восстановление проводилось в платиновом тигле. Замена калия натрием почти не улучшила процесса [95]. По методу Пелиго в качестве флюса применялся хлорид калия, а реакционная смесь в платиновом тигле защищалась от воздуха слоем древесного угля. Циммерман [96] изменил метод Пелиго. Он использовал железную бомбу [97]. Для предохранения от разъедания ее защищали слоем расплавленного хлорида натрия. Тетрахлорид урана, хлорид натрия и металлический натрий загружали в бомбу, которую затем завинчивали, а реакционную смесь нагревали до белого каления. Циммерман утверждал, что этим методом он получил чистый, плотный металл. Муассан [72] повторил опыты Циммермана и установил, что металлический уран, полученный [c.109]

    Для получения -элементов в свободном виде из природных соединений в промышленности применяют восстановление оксидов, галогенидов и сульфидов водородом, коксом или типичными металлами (Na, Са, А1), а нередко и электролиз расплавов и растворов солей. [c.186]

    Основные методы получения этих металлов в свободном состоянии сводятся к карботермическому, металлотермическому, водородному восстановлению оксидов, галогенидов, комплексных галогенидов, электролизу расплавов солей. Предварительно руды, содержащие ванадий и его аналоги, обогащают, концентрируют, затем переводят в оксиды или галогениды и подвергают восстановлению  [c.301]

    МЕТАЛЛОТЕРМИЯ, процессы получения металлов, основанные на восстановлении их оксидов и галогенидов другими, более активными металлами протекают с выделением тепла. С помощью М. получают такие металлы, как, напр., Т), и, РЗЭ, Nb, Та, безуглеродистые сплавы, отличающиеся высокой чистотой (гл. обр. по углероду). Высокая чистота конечных продуктов металлотермич. восстановления обусловливает, напр., высокую пластичность полученных металлов, т. к. содержание мн. примесей в них, в первую очередь примесей внедрения, на очень низком уровне. [c.48]

    Алюминий (чистый и в виде сплавов) вслед за железом возглавляет список металлов, без которых нет современной техники. Из чистого алюминия, ввиду его высокой электропроводности (третье место после серебра и меди), делают провода. В качестве конструкционных материалов чаще используют сплавы алюминия с Си, Mg, Мп (дуралюминий) и с Si (силумины). Это основные материалы авиационной и космической техники, строительной индустрии, автомобилестроения и т. д. Алюминий участвует также в процессе получения металлов (Са, Sr, Ва, Мп и др.) путем восстановления их из оксидов или галогенидов (алюмотермия). Глинозем широко распространен в производстве огнеупорной и химически стойкой керамики. Природный или синтетический корунд (высокотемпературная кристаллическая модификация AI2O3) необходим в производстве лазеров, подшипников (камней) в часах и драгоценных камней рубина и сапфира. Благодаря сильному гидролизу AI2 (804)3 и NaAlOa служат для осветления воды на станциях городского водопровода  [c.145]


    Методы первой группы представляют собой наиболее общий путь получения восстановлением безйодных галогенидов кальцием. Лучший из них— восстановление 10%-ным избытком кальция в танталовых тиглях в атмосфере аргона хлоридов Ьа, Се, Рг, N(1, 0(1 (нагревание в течение 15 мин. при 1350—1400° С) или ( ридов остальных элементов (нагревание в течение 5 мин. при 1550°С) [816, 828, 1256, 1845, 1849]. Это дает возможность получить сразу слиток редкоземельного металла с высоким выходом, что особенно важно при переработке небольших количеств материала. Получение металлов тяжелых элементов восстановлением хлоридов приводит к образованию губчатого продукта, переработка которого в монолитный металл является источником введения дополнительного количества примесей. Температура реакции в данном случае недостаточна для плавления редкоземельных металлов. Увеличение же температуры ведет к сильному испарению самих хлоридов. Поэтому замена хлоридов менее летучими фторидами позволила вести процесс при более высокой температуре с образованием компактных металлов. [c.22]

    Органические комплексы переходных металлов приобрели за последние десятилетия важное значение в промышленности. Они являются активными катализаторами таких реакций ненасыш енных соединений, как гидрирование, изомеризация, димеризация, полимеризация, гидроформилированйе и т. д. Электрохимический способ их получения заключается в катодном восстановлении смесей легкодоступных соединений переходных металлов (галогенидов, ацетил-ацетонатов и т. д.) и циклоолефинов (циклопентадиена, циклоокта-тетраена, циклооктадиена, циклододекатриена и т. д.). [c.401]

    Удобным способом получения аминборанов является восстановление комплексов галогенидов бора с аминами при помощи гидридов или боргидридов металлов [275, 286—289]. С гидридами лития и натрия без активаторов эта реакция не идет. Активаторами могут служить бортриалкилы, алюминийтриалкилы и т. п. [c.239]

    Водород — это основной восстановитель, который применяется при препаративном получении чистых металлов. Для восстановления водородом обычно берутся тон-коизмельченные окислы металлов. Восстановление протекает при относительно низких температурах, спекания или сплавления при этом не происходит и металл получается в виде тонкого порошка. Галогениды и сульфиды восстанавливаются водородом значительно труднее, так как сродство водорода к сере и галогенам ниже, чем к кислороду. В ряду галогенидов металлов фториды восстанавливаются легче (сродство к водороду при переходе от иода к фтору увеличивается). [c.26]

    Электрорафинирование ниобия в хлоридно-фторидных расплавах щелочных галогенидов, содержащих гептафторониобат калия, является одним из перспективных методов получения металла высокой чистоты [1—3]. Электрохимическое восстановление ионов пятивалентного ниобия из хлоридно-фторидных расплавов протекает последовательно в две стадии одноэлектронный перезаряд до N1) + и четырехэлектронный разряд последнего до металла [3—5]. При контакте металла с солевым расплавом наблю- [c.44]

    Были получены все металлы цериевой группы (Ьа, Се, Рг, N(1, 8т), причем большая часть из них с небольшими примесями Для этого использовались следующие методы 1) восстановление окиси или галогенида редкоземельного элемента щелочным металлом (обычно натрием), кальцием или магнием, но этот метод часто приводит к образованию сплава 2) электролиз расплавленного галогенида, обычно безводного хлорида и 3) получение амальгам посредством восстановления спиртового раствора подходящей соли на ртутном катоде с последующей отгонкой ртути в хвакууме. Так как эти металлы легко окисляются на воздухе и легко образуют силициды, то обычная стеклянная и фарфоровая посуда не может применяться для их получения для этой цели подходят тигли из очищенной магнезии, причем для предохранения от окисления кислородом воздуха используется слой хлорида бария з. [c.83]

    В промышленности давно известно получение металлов ири помощи электролиза. Применительно к урану разработан метод электролитического восстановления его галогенидов в расплавленных средах. Температура, при которой осуществляют электролиз, зависит от температуры плавления электролита. Чаще всего для осуществления электролиза в промышленности используют фтористые соли урана, тетрафторид и его соединение с фторидом калия КиРв. Выделение урана на катоде протекает по реакциям [c.379]

    МСС с металлами нещелочной группы. МСС с железом получено восстановлением МСС графит-ГеС1з боргидридом натрия и лития алюмогидридом. Восстановление МСС с хлоридами металлов до металла получено с использованием в качестве восстановителей ароматических анион-радикалов [6-84]. Возможно двухступенчатое электрохимическое восстановление МСС с галогенидами металлов. МСС, полученные восстановле- [c.295]

    Для многих металлов формой, подлежащей восстановлению, является оксид. Поэтому сульфидные руды для перевода в оксидную форму подвергают обжигу. Водородным восстановлением оксидов получают такие металлы, как Мо, АУ, Не и т. п. Водород — сравнительно мягкий восстановитель. Карботермическое восстановление используют для получения Ре, РЬ, 5п, Си, 2п, N1, Со, Мп и др. Более энергичным восстановителем является металлический алюминий. Алюмотермия широко используется для получения таких металлов, как Сг, Мп, Ре (алюмотермическая сварка), щелочно-земельные металлы. Восстановление оксидов металлов алюминием протекает с большим выделением теплоты, что обусловлено высоким сродством алюминия к кислороду. Еще энергичнее как восстановитель действует магний, который используют для восстановления как оксидов (например, В2О3), так и галогенидов (например, при получении титана и его аналогов). Наконец, самые активные металлы — алюминий, магний, щелочно-земельные и щелочные — получают электролизом расплавов солей (как правило, хлоридов илп фторидов). Катод электролизера можно рассматривать как наиболее энергичный восстановитель — непосредственный донор электронов. [c.44]

    Например в ходе количественного эмиссионного спектрального определения с конечной фотографической регистрацией спектра осуществляются следующие основные процессы и операции а) испарение и перенос пробы из канала угольного электрода в плазму разряда б) возбуждение атомов элементов в плазме и излучение характеристических спектральных линий элементов в) отбор определенной доли светового потока из общего потока, излучаемого плазмой, с помощью дозирующей щели спектрографа г) пространственное разложение полихроматического излучения на соответствующие характеристические частоты (развертка спектра) с помощью призмы илн дифракционной решетки д) фотохимическое взаимодействие светочувствительного материала с квантами электромагнитного излучения (образование скрытого изображения спектра на фотопластинке или фотопленке) е) химические реакции восстановления ионов серебра до металла и растворения галогенидов серебра в комплексующих агентах (проявление и фиксирование) ж) поглощение света спектральными линиями на фотографической пластинке при измерении плотности почернения спектральных линий определяемого элемента и фона с помощью микрофотометра а) сравнение полученных значений интенсивностей спектральных линий с илтен-сивностью соответствующих линий эталонов или стандартов и интерполяция искомого содержания элемента в пробе по градиуровочному графику. [c.42]

    Ранее было установлено, что среди олефинов только этилен и стирол могут легко полимеризоваться радикалами, ирнчем этилен — чаще при высоких давлении и температуре. Установлено, что катализаторы, полученные восстановлением галогенидов переходных металлов металлоорганическими восстанавливающими агентами, полнмеризуют этилен и замещенные а-олефины в высокомолекулярные кристаллические ориентированные по лимеры. [c.246]

    НЕСЕРЁБРЯНАЯ ФОТОГРАФИЯ, см. Репрография. НЕСМЕЯНОВА РЕАКЦИЯ (Несмеянова диазометод), получение ароматич. металлоорг. соед. восстановлением металлич. порошком двойных солей арилдиазонийгалогенидов и галогенидов металлов  [c.220]


Смотреть страницы где упоминается термин Получение металлов из галогенидов восстановлением: [c.539]    [c.67]    [c.134]    [c.49]    [c.464]    [c.322]    [c.128]    [c.18]    [c.464]    [c.603]    [c.251]    [c.144]    [c.571]    [c.406]    [c.175]    [c.237]    [c.614]   
Смотреть главы в:

Руководство по неорганическому синтезу -> Получение металлов из галогенидов восстановлением




ПОИСК





Смотрите так же термины и статьи:

Восстановление металлами

Галогениды металлов

Галогениды получение

Металлы получение



© 2025 chem21.info Реклама на сайте