Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт через плазматическую мембрану

    Подтверждением того, что комплексообразование калия с ферментами и субстратами играет важную роль в транспорте ионов, является образование комплексов этих катионов с антибиотиком валиномицином. Уже давно известно, что антибиотики, подобные валиномицину, вызывают транспорт ионов калия в митохондрии. Валиномицин образует прочный комплекс с ионами калия, в то время как ион натрия связывается этим антибиотиком в очень незначительной степени. Вследствие этого валиномицин можно рассматривать как биологическую модель переносчика ионов калия через плазматические мембраны в клетку. [c.239]


    Различная скорость проникновения аминокислот через мембраны клеток, установленная при помощи метода меченых атомов, свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос аминокислот как через внешнюю плазматическую мембрану, так и через систему внутриклеточных мембран. Несмотря на тщательные исследования, проведенные в разных лабораториях, тонкие механизмы функционирования активной системы транспорта аминокислот пока не расшифрованы. Очевидно, таких систем существует несколько. В частности, А. Майстером предложена оригинальная схема транспорта нейтральных аминокислот через плазматическую мембрану, которая, по-видимому, активна в почечных канальцах, слизистой оболочке кишечника и ряде других тканей. Сущность этой гипотезы можно представить в виде схемы  [c.430]

    Плазматическая мембрана играет важнейшую роль в обмене ве-ш еств. Она служит осмотическим барьером клетки и контролирует как поступление веществ внутрь клетки, так и выход их наружу. В мембране имеются механизмы активного транспорта и системы субстрат-специ-фичных пермеаз. По-видимому, липидная пленка элементарной мембраны пронизана мостиками (или каналами) из белков, и именно эти белки служат порами, через которые осуществляется регулируемый транспорт веществ. [c.24]

    Наиболее прямые указания на межклеточный транспорт через плазмодесмы были получены в экспериментах с введением красителей и с пропусканием электрического тока. Так, например, проционовые красители лишь с трудом проходят через плазматическую мембрану, однако после введения их с помощью микрокапилляра в одну из клеток листа элодеи они довольно быстро появляются в соседних клетках. Точно так же при подаче электрических импульсов внутрь одной из клеток эти импульсы регистрируются (хотя и в ослабленном виде) электродами в соседних клетках. Степень ослабления электрического сигнала зависит от плотности расположения плазмодесм и от числа клеток, находящихся между электродами (рис. 19-16). Кроме того, электрод, приложенный к наружной поверхности плазматической мембраны, не улавливает сигналов, поданных внутрь клетки значит, они распространяются каким-то образом в обход высокого сопротивления мембраны. [c.174]

    Для того чтобы экзогенный субстрат мог быть использован клеткой, он должен пройти через ее пограничные слои. Клеточная стенка не служит существенной преградой для небольших молекул и ионов, но она задерживает макромолекулы, масса которых превыщает 600 Да. Пограничным слоем, ответственным за транспорт питательных веществ внутрь клетки, является плазматическая мембрана. [c.257]


    Наиболее интенсивно изучается активный перенос ионов N3+ и К+ через плазматическую мембрану [302]. Сущность этого явления состоит в том, что внутриклеточная жидкость имеет высокое содержание ионов К+ и низкое содержание ионов 1Ыа+, во внеклеточной среде, наоборот, выше содержание ионов Ма+. Для поддержания указанных градиентов концентраций моновалентных катионов и, особенно, для их восстановления после деполяризации мембраны обязательно должно происходить удаление из клетки ионов Ыа+ и активное всасывание в клетку ионов К" ". Эта система транспорта, сосредоточенная в плазматической мембране, называется натриевым насосом . Энергия, необходимая для активного транспорта ионов Ыа+ против градиента концентрации, обеспечивается расщеплением АТФ (до АДФ и неорганического фосфата). Подобный распад АТФ катализируется ферментом—(Ка+-1-К )-активированной АТФ-азой. [c.380]

    Мы обсудим здесь транспорт веществ через плазматическую мембрану, отметив, что аналогичный характер носит и транспорт через мембраны клеточных органелл. Существует четыре основных механизма для поступления веществ в клетку или выхода их из клетки наружу диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т. е. не требуют затрат энергии два последних — активные процессы, связанные с потреблением энергии. [c.186]

    Несмотря на то что каждому типу мембран присущи определенные липидные и белковые компоненты, основные структурные и функциональные особенности, обсуждаемые в этой главе, характерны как для внутриклеточных, так и для плазматических мембран. Прежде всего нам хотелось бы рассмотреть структуру и организацию главных компонентов всех биологических мембран - липидов, белков и углеводов. Затем мы обсудим механизмы, используемые клетками для транспорта малых молекул через плазматическую мембрану, а также способы поглощения и выделения клетками макромолекул и крупных частиц. В последующих главах будут проанализированы некоторые дополнительные функции плазматической мембраны роль в клеточной адгезии (гл. 14) и в сигнальных функциях (гл. 12). [c.349]

    Клеточные мембраны разного происхождения построены из двойного слоя фосфолипидов, в который включены полипептиды. Так, в мембранах бактерий находится около 300 различных белков, которые участвуют в процессах дыхания, транспорта электронов и биогенеза самой мембраны. Двойной липидный слой плазматической мембраны должен полностью препятствовать проникновению все полярных молекул, каковыми в большинстве своем являются молекулы питательных веществ. Поэтому их поступление в клетку осуществляется с помощью специальных мембранных белков через модифицированные участки мембраны. [c.58]

    Повышение уровня инсулина увеличивает поступление глюкозы в мышцы и жировую ткань за счет ускорения транспорта глюкозы через клеточные мембраны путем перемещения белков-переносчиков в плазматическую мембрану. Кроме того, инсулин стимулирует синтез гликогена в мышцах. Таким образом, поглощение глюкозы печенью, мышцами и жировой тканью приводит к восстановлению нормальной концентрации глюкозы приблизительно через 2 ч после приема пищи. [c.384]

    Присутствие гидролазы (р-глюкозидазы) в лигнифицирующихся клетках и ее отсутствие в нелигнифицирующихся камбиальных клетках было подтверждено гистохимическим методом с использованием индикановой цветной реакции [81 ]. Однако лишь недавно удалось выделить и охарактеризовать эту глюкозидазу из сеянцев ели [183, 184]. Механизм транспорта кониферина через плазматические мембраны к глюкозидазе клеточной стенки еще неизвестен, хотя некоторые опытные данные наводят на мысль об участии телец Гольджи [2281 (см. 6.2.3). [c.107]

    Эти факты свидетельствуют о том, что 5-ОТ не затрагивает активных механизмов транспорта Са " , а способствует пассивному проникновению Са " через плазматические мембраны и последующему освобождению его из других субклеточных структур. Такое заключение подтверждается тем, что в опытах in vitro 5-ОТ в концентрации 10 —10 М увеличивал количество мест сорбции анионного красителя бирюзового прямого светостойкого К , но уменьшал их число для катионного красителя нейтрального красного па поверхности мембран нервных окончаний. [c.185]

    Транспорт через плазматическую мембрану-это не единственный механизм удаления Са из цитозоля. В самом деле, площадь плазматической мембраны в 10-100 раз меньше общей площади мембран различных клеточных органелл, накапливающих Са . Мембранная Са -АТРаза позволяет эндоплазматическому ретикулуму (и в особенности саркоплазматическо-му ретикулуму мьппечных клеток) поглощать из цитозоля большие количества ионов Са " против крутого концентрационного градиента, а митохондрии используют для той же цели электрохимический градиент на своей внутренней мембране, создаваемый за счет переноса электронов при окислительном фосфорилировании (разд. 9.1.8). [c.269]


    Это заключение было проверено в модельных опытах, в которых транспорт модифицировали, влияя на метаболизм. Как видно из табл. 8.5, подавление метаболизма путем дезоксигена-ции, введения 2-дезоксиглюкозы или удаления субстратов во всех случаях приводило к существенному подавлению активного транспорта протонов и снижению хн со сравнительно слабым влиянием на ПДС. Только при введении в омывающий раствор 2,4-динитрофенола влияние на хн и ПДС было сопоставимым. Влияние этого вещества на ПДС, по-видимому, обусловлено усилением проницаемости мембран для протонов, что приводит к усилению пассивной утечки протонов в клетки через плазматические мембраны по пути, параллельному активному насосу. Такое объяснение подтверждается тем фактом, что 2,4-динитрофенол существенно снижает ПДС (на 12%) даже при введении его со стороны внешней поверхности в низкой концентрации (2-10 М), не влияющей на В соответствии [c.188]

    Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или фуппы родственных молекул. В клетках существуют также способы пфеноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5). [c.379]

    На первый взгляд энергозависимый синтез АТР, по-видимому, нельзя рассматривать как нейрохимическую проблему, но между передачей сигнала и энергетическим сопряжением существует некоторое сходство. Оба этих процесса имеют много общего и осуществляются с помощью белков, встроенных в липидные мембраны. Их взаимосвязь четко прослеживается при обсуждении фотозависимого протонного насоса у галофильных бактерий (с. 181). Бактериальный рецептор, аналогичный рецепторам нейрона (гл. 8 и 9), воспринимает сигнал из окружающей среды и передает его внутрь через плазматическую ме.мбрану. Следовательно, энергия света внешнего сигнала обеспечивает внутриклеточный синтез АТР. Изучение бактериородопсина и механизма сопряжения фоторецепции, а также энергозависимого транспорта протонов (и наконец, синтеза АТР) представляет особый интерес при исследовании нейрорецептора. [c.171]

    Как уже отмечалось в 3.2, взаимодействие биополимера со специфическим лигандом не сопряжено с преодолением существенных энергетических барьеров и является быстрым процессом. Поэтому чаще всего исследователи имеют дело с равновесными системами, требуюпшми термодинамического описания. Б дальнейшем будут рассматриваться системы, в которых либо оба партнера находятся в растворе, как в гомогенных ферментативи11гх реакц11ях при взаимодействии гемоглобина с кислородом, так и при взаимодействии в растворе антигена с антителом и т.п., либо биополимер на.ходится в составе мембраны на гюверхности клетки или в препарате мембран и, следовательно, образует отдельную фазу, как в случае рецепторов или белков, осуществляющих транспорт веществ через плазматическую мембрану. Если партнеры находятся в растворе, то характеристиками количества как биополимера Р, так и лиганда L могут служить концентрации. В гетерогенных системах можно говорить лишь о количестве биополимера. Характеристикой взаимодействия в общем случае служит константа ассоциации А а, выражение для которой запишется в виде [c.117]

    У животных клетки в зонах интенсивного поглощения или транспорта обычно намного увеличивают площадь своей плазматической мембраны, образуя множество тонких отростхов, называемых микроворсинками (разд. 10,5.1). Жесткая оболочка не позволяет растительным клеткам использовать такой способ, поэтому онн вынуждены искать иные пути. Специализированные передаточные клетки увеличивают свою поверхность за счет внутренних выростов клеточной стенкн, выстланных плазматической мембраной (рис. 19-22). Эти клетки встречаются во многих местах, где происходит особенно интенсивный перенос веществ через плазматическую мембрану, напрнмер в жилках листа, где сахароза поступает в сосудистую сеть флоэмы (рис. 19-23), нли в местах активного переноса растворенных веществ из ксилемы в другие тканн. [c.177]

    М (pH 1,0), тогда как концентрация ионов Н в клетках составляет приблизительно 10 М (pH 7,0). Это означает, что обкладочные клетки обладают способностью секретировать ионы водорода даже против градиента порядка 10 1. По-видимому, эти клетки имеют какие-то очень активные мембранные насосы для секреции ионов водорода, так как для поддержания столь высокого градиента концентрации требуется значительное количество энергии. Перенос веществ через мембраны против градиента концентрации называют активным транспортом. Образование желудочной НС стимулируется особым, связанным с мембраной ферментом-TaK называемой" Н-транспортирующей АТРазой. При образовании желудочного сока на каждую молекулу цитозольного АТР, гидролизованного до ADP и фосфата, из цитозоля наружу через плазматическую мембрану выводятся два иона Н . [c.428]

    И, наконец, другим способом транспорта вещества через биомембраны является транспорт в объем. При эндоцитозе происходит транспорт в объем внеклеточного вещества в клетку. После проникновения вещества в плазматическую мембрану происходит смыкание краев мембраны и капсулирование вещества в пределах границ цитоплазмы. В том случае, когда кап-сулированное вещество является жидким, процесс называют пи-ноцитозом, а если твердым — фагоцитозом. Экзоцитоз представляет собой обратный процесс, посредством которого вещество с внутренней стороны плазматической мембраны переносится на внешнюю сторону. [c.330]

    На проницаемость мембраны могут влиять различные факторы. Так, инсулин повышает проницаемость плазматической мембраны мышечных клеток для глюкозы, стимулируя транспорт глюкозы из крови и межклеточных пространств внутрь клеток скелетной и сердечной мышцы и жировой ткани. При интенсивном течении процессов окислительного фосфорилирования, приводящих к накоплению больших количеств АТФ, внутри митохондрий происходит взаимодействие АТФ с актомиозинподобным белком мембран, сопровождающееся конформационными изменениями белка. А это в свою очередь приводит к сокращению митохондриальных мембран и уменьшению их проницаемости, т. е. к снижению скорости транспорта веществ через мембрану митохондрий. С уменьшением концентрации АТФ внутри митохондрий проницаемость мембран увеличивается. По-видимому, митохондриальная мембрана участвует в регуляции энергетического обмена клетки. [c.439]

    В последнее время микроэлектродную технику стали использовать для изучения транспорта ионов через специализированные белковые каналы (именуемые также ионными каналами), содержащиеся в небольших участках плазматической мембраны. В этом случае необходим стеклянный микроэлектрод с несколько более толстым кончиком. Его не вводят в плазматическую мембрану, а плотно и мягко прижимают к ней (рис. 4-33). Это позволяет регистрировать электрические характеристики небольшого участка мембраны, прилегающего к кончику микроэлектрода, который прикасается к клетке или находится на небольшом расстоянии от нее (рис. 4-34). Данный метод известен как пэтч-регистрация (регистрация в данном участке). Его применение произвело настоящую революцию в исследовании ионных каналов. Это единственный метод клеточной биологии, который дает возможность изучать функцию одиночной белковой молекулы в реальном времени мы вернемся к рассмотрению данного вопроса в гл. 6. [c.197]

    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Олнако клеточные мембраны пропинаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, называемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лищь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в олном-единственном гене приводят к исчезновению у бактерий способности гранспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цистинурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистина в моче, что приводит к образованию цистиновых камней в почках. [c.381]

    При перемещении груза из одного компартмента в другой транспортные пузырьки обязательно переносят как мембраны, так и содержимое органелл. Тем не менее и при таком выравнивающем процессе сохраняются различия в составе мембран разных компартментов белок-рецептор SRP встречается только в мембране ЭР, а гликозилтрансферазы и ферменты процессинга олигосахаридов расположены только в мембранах определенных цистерн Гольджи и т. д. Следовательно, мембраны ЭР и каждою типа цистерн Гольджи должны иметь специальные механизмы для сохранения своей уникальности. Один из них - наличие специальных сигналов сортировки для каждого этапа продвижения продукта через ЭР и аппарат Гольджи. В результате, например, белки плазматической мембраны, попадающие в клетку путем специфического эндоцитоза. захватываются окаймленными ямками. Однако существует точка зрения, согласно которой при биосинтетическом транспорте через ЭР и аппарат Г ольджи, используется противоположный механизм, г.е. транспорт происходит автоматически, а для удержания продукта в орга-нелле требуются специфические сигналы. В соответствии с этой гипотезой каждый постоянный компонент ЭР или аппарата Гольджи должен иметь специальный сигнал, отвечающий за его сохранение в этом компартменте. Стратегия автоматического движения вперед и избирательного сохранения привлекательна еще и потому, что число белков, проходящих сквозь ЭР и аппарат Г ольджи к месту конечного назначения, значительно больще числа белков, остающихся там. Более того, при такой стратегии те белки, которые утратили свои сигналы сортировки, или были направлены в неверном направлении, могут выводиться из клетки Наконец, если бы сигналы требовались для транспорта, то они были бы необходимы для каждой его стадии - от ЭР к аппарату Г ольджи [c.82]

    Слои эпителиальных клеток покрывают поверхность тела и выстилают все его полости. Несмотря на значительные биохимические различия, у этих слоев есть по крайней мере одна общая функция они служат высокоселективными барьерами, разделяющими очень различные по химическому составу внутренние и наружные жидкости. Ведущую роль в поддержании функции эпителиев как селективных барьеров играют плотные контакты. Например, эпителиальные клетки, выстилающие тонкий кишечник, должны удерживать большую часть его содержимого в просвете кишки и в то же время должны перекачивать оттуда во внеклеточную тканевую жидкость определенные питательные вещества, которые затем всасываются в кровь. Такой перенос осуществляют две группы специализированных транспортных белков одна из них находится на апикальной поверхности эпителиальных клеток (эта поверхность обращена к просвету кишечника) и транспортирует в клетку избранные молекулы, а другая-на базальной и латеральной (или, как говорят, базолате-ральной) поверхности и вновь откачивает эти молекулы из клетки с другой стороны (рис. 12-24). Очевидно, что для поддержания направленного транспорта апикальные насосы не должны диффундировать (в плазматической мембране) на базолатеральную поверхность и наоборот. Кроме того, необходимо предотвратить обратную утечку транспортируемых молекул в полость кишечника. Плотные контакты обеспечивают оба этих условия. Во-первых, они служат препятствием для диффузии молекул в липидном бислое плазматической мембраны. Во-вторых, они так герметично соединяют соседние клетки, что через образующийся непрерывный клеточный слой не проникают даже малые молекулы. [c.213]

    В эритроцитах комплекс ферментов гликолиза формируется на внутренней поверхности плазматической мембраны [36]. Роль якорной площадки, обеспечивающей фиксацию метаболона на мембране эритроцитов, играет белок полосы 3 [49] — интегральный мембрано-связанный гликопротеин с молекулярной массой 93 кДа, основной функцией которого является транспорт анионов через мембрану эритроцитов [62]. (Белок полосы 3 способен осуществлять транспорт внутрь эритроцита и одного из интермедиатов гликолиза — фосфоенолпирувата [37].) Многие исследователи полагают, что белок полосы 3 существует в мембране преимущественно в димерной форме. [c.178]

    В эпителии некоторых насекомых электрогенная К" "-АТФаза катализирует транспорт массовых количеств К+ от базальной к апикальной стороне эпителиальной клетки. Этот процесс важен для движения жидкости через эпителий. К+-АТФаза насекомых в отличие от Ыа+/К -АТФазы и К+/Н+-АТФазы откачивает К" из клетки. Она локализована в апикальной области плазматической мембраны. K -АТФаза образует грибовидные выросты размером около 10 нм, внешне напоминающие фактор Fi. Ее активность устойчива к оуабаину и специфически тормозится инсектицидом дельта-эндотоксином из Ba illus thuriningiensis. [c.235]

    Многие белково-пептидные гормоны образуются из предшественников большего молекулярного веса, и секреция этих гормонов становится возможной только после того, как произойдет отщепление лишнего фрагмента. Так, секреции инсулина предшествует превращение в р-клетках препроинсулина в проинсулин, а затем в инсулин (см. раздел 2.2.1). Существование прогормонов защищает эндокринную железу от местного действия гормона, обеспечивает его внутриклеточный транспорт. По мере превращения препрогормона в гормон, как правило, возрастает гидрофильность молекулы. Посдедовательная модификация белка приводит к тому, что из эндоплазматического ретикулума он переходит в цистерньг аппарата Гольджи, а затем в специальные образования (везикулы) плазматической мембраны. В везикулах завершается синтез молекулы гормона, мембрана везикулы защищает гормон от инактивации, но главный выигрыш, который дает такой способ запасания гормона, — это быстрый выброс в кровь больших количеств регулятора. Биосинтез некоторых белково-пептидных гормонов, их транспорт к периферии секреторной клетки занимает 1—3 ч. Очевидно, что воздействие на биосинтез приведет к изменению уровня этих гормонов в крови лишь через несколько часов. Влияние же на секрецию гормонов, синтезированных впрок и запасенных в специальных гранулах, позволяет повышать концентрацию гормонов в крови в не- сколько раз за секунды или минуты. [c.103]

    Для перехода клетки из активного состояния в состояние покоя концентрация Са2+ в цитоплазме должна понизиться. Определенную роль в этом. могут играть Са-связывающие структуры клетки. Однако полное удаление Са из цитоплазмы достигается за счет функционирования специальных Са +-насосов, переносящих Са + через мемб]раны. Сродство Са -насоса митохондрий к Са -ь очень низко — —10 М. Боль-. шая активность и высокое сродство Са2+-насоса ретикулума М) позволяет ему перенести во внутриклеточные цистерны основные количества цитоплазматического Са , а подчистку завершает, по-видимому, Са -насос плазматической мембраны, активность которого меньше, но сродство к ионам несколько выше (5-10-8 М), чем у Са + Насоса ретикулума (см.,рис. 87). Обе Са-переносящие системы мембран функционируют против высоких градиентов Са + (10 000-кратных), используя для активного транспорта -энергию гидролиза АТФ. [c.234]

    Клетка млекопитаюш,его заключена в оболочку — плазматическую мембрану, которая составляет значительную часть ее общей массы и до известной степени определяет ее форму. Мембрана является не только барьером между клеткой и внешней средой, но представляет собой работающее устройство, обеспечивающее относительное постоянство состава внутриклеточного объема. Наряду с этим плазматическая мембрана содержит специфические рецепторы для внешних возбудителей, присутствием которых могут объясняться такие разнообразные ответы, как ориентированное движение клетки (хемотаксис), стимуляция связанных в мембране ферментов, например вышеописанных циклаз, или генерация сигналов, которые могут быть химическими, например сАМР и сСМР, или электрическими, как в нервах (гл. 37). Плазматическая мембрана также является местом расположения специфических для клетки антигенов (гл. 29), которые во многих случаях характерны как для данного типа клеток, так и для вида млекопитающего в целом. Белки и специфические ферменты, связанные с транспортом нонов и метаболитов через мембранный барьер, тоже локализованы в этой структуре (см. ниже). [c.370]

    Видимо, следует признать, что убедительных доводов для предположения о возможности активного транспорта кислорода через биологические мембраны на сегодняшний день нет. Кислород — это инертный газ, его молекула электронейтральна, и нет никаких доказательств или хотя бы намеков, что его перенос через гистогематич кие барьеры или плазматическую мембрану происходит с затратами энергии энергетические расходы на транспорт кислорода определяются только работой мускулатуры и передвижением крови по сосудам. Таким образом, спор в целом решается в пользу диффузии. Благоприятные для нее условия в организме животных создаются за счет концентрационных градиентов рОг, которые на системном уровне обозначаются как каскады напряжения кислорода [542]. [c.15]

    Эндоцитоз и экзоцитоз — процессы транспорта через мембраны больших молекул, бактерий, а также чужеродных частиц в клетку (эндоцитоз) или из клетки (экзоцитоз). В этих процессах участвует плазматическая мембрана клеток, которая либо впячивается внутрь клетки, что обеспечивает поглощение макровеществ, либо сливается с внутриклеточными пузырьками, высвобождая содержимое во внеклеточное пространство [c.80]


Смотреть страницы где упоминается термин Транспорт через плазматическую мембрану: [c.214]    [c.379]    [c.170]    [c.173]    [c.380]    [c.392]    [c.13]    [c.77]    [c.220]    [c.103]    [c.223]    [c.174]    [c.380]    [c.392]   
Смотреть главы в:

Биология Том1 Изд3 -> Транспорт через плазматическую мембрану




ПОИСК







© 2024 chem21.info Реклама на сайте