Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные активности и элементы без переноса

    Определение коэффициента активности. Средние ионные активности и коэффициенты активности определяют посредством измерений ЭДС химических элементов без переноса, например [c.187]

    Средние ионные активности и коэффициенты активности определяют посредством измерений э. д. с. химических элементов без переноса, например [c.171]


    Концентрационные элементы без переноса ионов состоят из двух электродов — твердых сплавов или амальгам, — одинаковых по своей природе, отличающихся по содержанию активного вещества. Оба электрода погружены в один и тот же раствор, содержащий ион активного вещества. Существенное отличие таких элементов — отсутствие границы между жидкими фазами и, следовательно, диффузионного потенциала, искажающего результат измерения ЭДС. Примером такого элемента может служить кадмиевый амальгамный элемент [c.337]

    Коэффициент активности выражается отношением средней ионной активности к общей моляльной концентрации раствора электролита =а 1т. Активность выражает эффективную концентрацию какого-либо вида ионов. Наиболее точно среднеионный коэффициент активности определяют методом измерения э. д. с. Для этого применяют гальванический элемент без жидкостных границ — элемент без переноса (отсутствует диффузионный потенциал). [c.307]

    Однако подавляющее большинство химических цепей — это цепи с переносом, в которых имеется или непосредственное соединение двух растворов, или их соединение через солевой мостик. Комбинируя различные окислительно-восстановительные полуреакции, можно построить очень большое число химических цепей. Разность соответствующих стандартных потенциалов позволяет в первом приближении оценить э. д. с. этих цепей. Точное значение разности потенциалов на концах химической цепи с переносом рассчитать не удается, во-первых, из-за невозможности точного определения диффузионного потенциала и, во-вторых, из-за неизбежной замены активностей отдельных ионов в формуле Нернста средними активностями или просто концентрациями этих ионов. В качестве примера химической цепи с переносом можно привести цепь элемента Даниэля — Якоби  [c.127]

    ИОННЫЕ АКТИВНОСТИ И ЭЛЕМЕНТЫ БЕЗ ПЕРЕНОСА [c.57]

    Таким образом, элемент будет работать до тех пор, пока не выравняются концентрации (активности). Однако, э.д.с. концентрационных цепей с переносом ионов практически не всегда равна = фп—ф1, так как надо учитывать еще скачок потенциала, возникающий на границе между двумя растворами,— диффузионный потенциал (фд). [c.180]

    Симметрия всего комплекса имеет важное зна чение для исследования явлений переноса з ряда и оптической активности комплексов. Перенос заряда между ионом металла и лигандом зависит.от симметрии комбинации центрального иона металла и я-электронной системы лигандов, участвующих в обмене электрона. При рассмотрении симметрии можно пренебречь влиянием тех заместителей в молекуле лиганда, которые не участвуют в системе я-сопряжения молекулы. Перенос заряда оказывается достаточно интенсивным и, следовательно, применимым в аналитической химии, если отсутствует общий центр симметрии для центрального иона и для всех атомов системы сопряжения (ср. разд. 2.5.2). При изучении оптической активности комплексных соединений необходимо детальное знание их стереохимии, потому что комплексные соединения проявляют оптическую активность только тогда, когда у них нет ни центра симметрии, ни плоскостей симметрии, ни зеркально-поворотных осей симметрии. Отсюда следует, что оптически активные соединения либо вообще не обладают никакими элементами симметрии, кроме тождественного преобразования (асимметричные соединения), либо им свойственны только оси симметрии (диссимметричные соединения). [c.54]


    Металлоорганические соединения переходных элементов могут сильно различаться по устойчивости и реакционной способности. Устойчивость и химическая активность металлоорганических соединений в заметной степени определяются полярностью или степенью ионности связи. Для количественной характеристики полярности связи пользуются понятием ионности ковалентной связи. Под частичной ионностью ковалентной связи понимают полярность связи по сравнению с истинно ковалентной (совершенно неполярной, как в этане) и истинно ионной (с полным переносом электрона [427]. Значение ионности связи вычисляется по уравнениям Полинга [427, 562].  [c.105]

    В растворе ток переносят ионы Н+ и С1 , причем вклад каждого из них можно оценить, зная числа переноса. Если гальванический элемент произвел один фарадей электричества, количество ионов водорода в растворе с активностью возросло за счет окисления на аноде на 1 моль. Поскольку t+ фа радея перенесено ионами водорода к катоду, их количество в растворе с активностью уменьшится на t+ моль. [c.232]

    Как отмечалось в 2.1, зная связь ЭДС элемента без переноса с концентрацией электролита, можно определить средние коэффициенты активности ионов. Экспериментальное нахождение v рассмотрим на примере водных растворов хлороводорода. [c.114]

    РАБОТА 42, ОПРЕДЕЛЕНИЕ СРЕДНЕГО ИОННОГО КОЭФФИЦИЕНТА АКТИВНОСТИ ЭЛЕКТРОЛИТА В ВОДНОМ РАСТВОРЕ ПО Э. Д. С, ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА БЕЗ ПЕРЕНОСА ИОНОВ [c.152]

    Прежде всего необходимо установить, насколько точно отвечает изменение потенциала этого электрода изменению активности иона М+ в растворе. Для этого применяется гальванический элемент без переноса [c.582]

    Наибольший вред приносит электрохимическая коррозия. Электрохимической коррозией называется разрушение металла в среде электролита с возникновением внутри системы электрического тока. В этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного участка к другому). В качестве примера электрохимической коррозии рассмотрим коррозию железа в контакте с медью в растворе соляной кислоты. При таком контакте возникает гальванический элемент (рис. 87) (—)Fe H l u(+). Более активный металл — железо — окисляется, посылая электроны атомам меди, и переходит в раствор в виде ионов Fe +, а ионы водорода разряжаются восстанавливаются) на меди 2Н++2е-=Нг. [c.178]

    Как было показано, с помощью уравнения (54) нельзя определять парциальные свободные энергии ионов и, следовательно, измерения электродвижущих сил элементов с переносом нельзя использовать для получения данных о парциальных свободных энергиях и активностях ионов. [c.297]

    В предыдущих главах мы рассмотрели принципиальные основы методов, обычно применяемых для оценки диффузионных потенциалов или коэффициентов активности отдельных ионов, имея ввиду определение активности ионов водорода с помощью элементов с переносом. Теоретические трудности будут, в общем, такими же при использовании элемента без жидкостной границы. Однако имеются определенные экспериментальные преимущества, если воспользоваться соответствующими приближениями [c.57]

    Концентрационные элементы. Концентрацнонный элемент может работать как источник ЭДС до тех пор, пока активности окисленной (или восстановленной) форм реагирующего вещества в обоих электродах не выравниваются. Для этих элементов Е° = О, так как стандартные потенциалы электродов равны между собой. Примером элемента с переносом ионов является элемент [c.293]

    Другой исследованный э.цемент включает окислительно-восстановительную реакцию, которая связана с переносом дву. электроноп в каждом акте восста-мовлсння ионов. Это элемент AI AF+(aq)HSn , Sn (aq) [Pt. Напишите реакцию в эле.менте. Установите а) э. д. с. элемента, когда все активности равны 0,1 и [c.413]

    Измерение ЭДС гальванических элементов позволяет решать ряд научных и прикладных задач. Некоторые из них уже были описаны. Это определение констант равновесия и изменений термодинамических характеристик токообразуюш,ей реакции (с. 220) коэффициентов активности электролитов (с. 229— 230) чисел переноса (с. 233) величин pH и концентраций ионов мембранных и редокс-потенциалов. [c.245]

    Эта концепция дает новые модели и для промежуточных форм катализа (включая и переходные комплексы) и позволяет привлечь к изучению хемосорбции и катализа закономерности больших и хорошо изученных разделов химии комплексных и хелатных соединений и кристаллохимии. Однако механический перенос этих закономерностей на хемосорбцию и гетерогенный 1 атализ был бы такой же крайностью, как использование одних лишь коллективных макроскопических характеристик твердого тела (уровень Ферми, загиб зон, величина электропроводности и т. д.) во многих построениях электронной теории катализа на полупроводниках [27, 28]. Вызывает сомнение реальность универсальных рядов каталитической активности у металлов и сплавов или окислов элементов различной валентности с экстремумами при определенном числе -электронов (например, при одном или пяти -электронах) у атома (иона) комплексообразующего элемента. Это вытекает из следующих соображений а) обычно нет уверенности даже в сохранении поверхностным ионом металла объемного числа -электронов на 1 атом б) даже при правильной оценке валентности и числа -электронов у соответствующего элемента на поверхности данного образца совсем не обязательно считать (как это делают обычно), что экстремальная каталитическая активность появляется при числе -электронов, соответствующем экстремальным значениям энергии ионизации (сродства) или связи лигандов с центральным ионом в) для некоторых окислов прямыми опытами показано, что активные центры образованы ионами металла, имеющими валентность, резко отличающуюся от стехиометрической. Неудивительна поэтому противоречивость результатов последних экспериментальных работ [29], которые не могут служить серьезным подтверждением предсказапий, основанных на аналогии с прочностью комплексов. В частности, можно указать, что один из дауденов-ских максимумов (для №0 и С03О4), по-видимому, обусловлен частичным восстановлением до металлов. [c.25]


    Менее строгим в термодинамич. отношении является применение П. для определения активностей ионов (ионов Н +, напр., в рН-метрии). Для определения активностей (концентраций) ионов в растворах применяют обычно элементы с переносом. Такой элемент включает индикаторный электрод, действующий обратимо по отношению к иону, активность (или концентрация) к-рого определяется, и второй электрод—вспомогательный. Вспомогательный электрод должен иметь постоянный потенциал. В качестве вспомогательного электрода в зависимости от поставленной задачи применяют каломельный электрод, хлоросо-ребряный электрод и нек-рые др. Электродами, применяемыми для измерения активносте ионов, могут быть 1) металлич. электроды, обратимые к ионам металла, активность к-рого измеряется 2) электроды первого рода, обратимые к анионам хлорный, бромный и др. 3) электроды второго рода хлоросеребряный, сульфатно-ртутный и др. 4) индифферентные электроды, применяемые при измерениях окислительного потенциала золотые, платиновые и т. д. 5) стеклянные и ионптовые электроды с водородной и металлич. функциями. [c.140]

    В гальваническом элементе сами по себе равновесные электроды образуют неравновесную систему. Причиной неравнрвесности является разница плотностей электронов в металлах и, следовательно, стремление их переходить от одного металла к другому по внешней цепи. Одновременно во внутренней цепи происходит перенос ионов. Например, если во внешней цепи (рис. 11.2) электроны перемещаются слева направо, то на левом электроде протекает реакция окисления Mi -> +ze , а на правом — реакция восстановления - -ze -> М2. Катионы во внутренней цепи движутся от М к М2. Перенос катионов происходит до тех пор, пока не создается определенное (равновесное) для каждой температуры соотношение концентраций (активностей) электролитов в двух растворах. В качестве примера может служить цинковый элемент Якоби — Даниэля (рис. 11.3). Разомкнутый элемент находится в затормо женном неравновесном состоянии и может пребывать в этом состоянии как угодно длительно. Замыкание электродов металлическим проводником снимает торможение. На Zn-электроде (электрохимически более активном) протекает термодинамически необратимый процесс [c.168]

    Гальванические цепи с переносом неоднократно применяли для нахождения химической активности ионов одного вида — в частности, для измерения pH (см. разд. 3.1). Однако, как уже отмечено выше, получаемые на основе этого метода результаты содержат неконтролируемое в рамках термодинамики слагаемое, связанное с неопределенностью вклада, вносимого в э.д.с. элемента диффузионным потенциалом [см., например, уравнения (3.13) —(3.17)]. Тем не менее при качественном исследовании зависимости ионной активности от состава раствора иногда считают возможным не учитывать диффузионный потенциал, полагая, что его вклад в э.д.с. пренебрежимо мал. Так, Швабе, Кельм и Квик [94] определяли значения Ун+ и Y r в тройных системах НС1 — М(С104)г —НгО при постоянной концентрации НС1 (mi) и переменной концентрации перхлората (тг) по измерениям э. д. с. цепей [c.68]

    Заметим, что два сами по себе равновесные электрода обра- зуют неравновесную систему — гальванический элемент. Причиной неравновесности является разница плотностей электронов в металлах и, следовательно, стремление их переходить из одного металла в другой во внешней цепи. Если это происходит, то одновременно во внутренней цепи происходит перенос ионов (см. рис. X I.2) до тех пор, пока не создастся единственное при каждой температуре соотношение концентраций (активностей) электролитов в двух растворах, разграниченных мембраной. Это соотношение определяет термодинамическое равновесие всей системы. [c.132]

    В СССР приняты ГОСТы шкалы pH, например 0,05 М водному раствору кислой калиевой соли фталевой кислоты при 25° С соответствует pH 4,010. Значение pH устанавливают потенциометрическим, копдуктометрическим, колориметрическим и кинетическими методами. Потенциометрический метод основан на измерении э. д. с. гальванического элемента, в котором потенциал одного из электродов зависит от активностн водородных ионов. Чтобы уменьшить влияние природы аниона на активность ионов Н+, конструируют эталонные гальваиическпе элементы без переноса ионов (см. стр. 135). [c.158]

    Электрохимические элементы. Электрохимические элементы, непосредственно преобразующие энергию химического процесса в электрическую, называются химическими. Они состоят из неодинаковых электродов, и, следовательно, для них характерна различная химическая природа электродных реакций. Элементы, состоящие из одинаковых электродов, называются концентрационными. В этих элементах в электрическую энергию превращается работа процесса выравнивания активностей окисленной или восстановленной форм реагирующего вещества в обоих электродах. Элементы, в которых один и тот же раствор электролита является общим для обоих электродов, называются элементами без переноса. У них отсутствует диффузионный скачок потенциала. В противном случае говорят об элементах с переносом, имея в виду перенос ионов на границе контакта двух различных растворов. [c.291]

    Так как далеко не всегда можно подобрать электроды для левой части схемы (XXIII), то часто пользуются элементом с переносом (XXII). Экспериментальная процедура не отличается от описанной выше. Расчет Кмъ проводится на основании уравнения (IX.98), приводяшему к равенствам типа (IX. 109) — (IX. 111), в которых вместо активностей электролитов АС1 и ВС1 стоят активности ионов А+ и В+. Последние заменяют средними активностями электролитов или их концентрациями. [c.535]

    К другому типу концентрационных элементов, назьшаемых элементами без переноса, относится элемент с электродами из амальгамы цинка с активностью ионов цинка в электродах и а,, помещенных в раствор сульфата цинка с активностью а  [c.60]

    Схема каталитического процесса приведена на рисунке 101. Ключевым элементом является перенос протона от Ser-195 к His-57. Одновременно происходит атака атомом кислорода серина карбонильного атома углерода субстрата с образованием сначала промежуточного тетраэдрического соединения (1), а затем ацилфер-мента (2). На следующей стадии происходит деацилирование. Молекула воды занимает в активном центре место ушедшего аминного продукта (3). Протон от молекулы воды поступает в систему переноса заряда, а ион ОН одновременно атакует карбонильный атом углерода ацильной группы ацилфермеита. Как и на стадии ацилирования, образуется промежуточное тетраэдрическое соединение (4). Затем His-57 поставляет протон атому кислорода Ser-195, в результате чего освобождается ацильный продукт ои диффундирует в раствор, а фермент возвращается в исходное состояние. [c.199]

    Хичкок и Петерс [49] применили принцип Брёнстеда для определения концентрации ионов водорода в ацетатных и фосфатных буферных растворах при 25 и 38°С по измерениям э.д.с. элемента без переноса, состоящего из стеклянного и хлорсеребряного электродов. В раствор был добавлен Na l в таких количествах, чтобы он имел постоянную ионную силу, равную 0,16. По сравнению с концентрацией хлорида концентрация буфера была низкой. Поэтому и коэффициент активности НС1 считался одинаковым в каждом растворе и СнСа рассчитывали из уравнения  [c.54]

    Килланд [62] оценил значения й (т. е. р/В) в уравнении (I. 27) для 130 органических и неорганических ионов, исходя из данных для ионных подвижностей, радиусов в кристаллическом состоянии, деформируемости и чисел гидратации. Значения а и уг для некоторых ионов, обычно присутствующих в буферных растворах, даны в табл. П1.2. Для ионов водорода и гидроксила параметры не были рассчитаны независимыми методами, как это делалось для других ионов, а были приняты равными 9А и 3,5А, соответственно. Коэффициенты активности, полученные Килландом, хорошо согласуются с рассчитанными по данным э. д. с. элементов с переносом [63,, 64] (в тех случаях, где такое сопоставление возможно). [c.57]

    Тем не менее, полученная экспериментально величина pH не может согласовываться с величиной /( при любой конечной концентрации. Это совпадение становится возможным только тогда, когда условная шкала коэффициентов активности определена, например, в соответствии с уравнением Дебая и Хюккеля, таким образом, что значения К становится фиксированным при малой ионной силе. Кроме того, потенциал на жидкостной границе несомненно изменяется по мере того, как ионная сила буферных растворов падает. Следовательно значение ° -f д непостоянно. Наклон кривых, изображающих К как функцию квадратного корня из ионной силы, оказался несколько больше, чем наклон кривых Дебая и Хюккеля при низких концентрациях [11]. Ознакомление с табл. 111.1 показывает, что Яд для границы НС1(т)1КС1 (нас.) уменьшается равномерно с изменением т от 1,0 до 0,01. Поэтому можно предположить, что это уменьшение продолжается и д может быть крайне мало для очень низких значений т, когда ток переносится через границу исключительно ионами калия и хлора, подвижности которых близки друг к другу. Однако в противоположность обычному предположению потенциал на жидкостной границе между буферным раствором и насыщенным раствором КС1 не приближается к нулю, когда буфер разбавляется в пределах экспериментально достижимого диапазона, а в действительности может возрастать. Рис. IV. 1 иллюстрирует изменение кажущегося стандартного потенциала с изменением ионной силы для элемента Р1, Нг буферный раствор 1КС1 (нас.), [c.71]

    В сообщении о результатах тщательного изучения второй ступени диссоциации фосфорной кислоты в воде и в растворах, содержащих 10 и 20 вес. % метанола с помощью гальванического элемента без переноса, составленного из водородного и хлорсеребряного электродов, Эндер, Телчик и Шефер [30] высказали мнение, что активность ионов водорода является общей мерой кислотности. Однако они не предложили способа ее оценки в неводных и смешанных среда . Аналогичного вида гальванический элемент был применен Парксом, Крокфордом и Найтом [31] для определения величины раН цитратных и фосфатных буферных растворов в водно-метанольном растворителе, содержащем 10 и 20 вес. % метанола. Величина раН была определена как отрицательный логарифм активности ионов водорода (молярная шкала). Коэффициент активности ионов водорода принимает значение, равное 1, при бесконечном разбавлении в каждом из смешанных растворителей. Поэтому рйН = —lg( H-si/H) (где коэффициент активности у выражен в шкале молярности с). [c.196]

    Начатые в 1955 г. систематические исследования зависимости электродных свойств стекол от состава [25, 31—38] и упомянутые статьи Эйзенмана 1957— 1962 гг. стимулировали ряд работ по созданию и изучению свойств стекол с металлическими функциями. Среди них в нашей работе [19] на большом числе разных по составу натриевых стекол было показано удовлетворительное согласие величин э. д. с. элементов без переноса, составленных из стеклянных и хлорсеребряных электродов в широком интервале отношений активности Na i и КС1, с величинами э. д. с., рассчитанными по простой ионообменной теории. Расхождение между экспериментальными и теоретическими значениями э. д. с. не превышало 5—6 мв, а в большинстве случаев составляло не более 2 мв. Это позволяет характеризовать специфичность натриевой функции стекол, а также и обменной калиевой функции, константой обмена ионов Kn k, так как значениями этой константы будет с достаточной точностью определяться интервал отношений концентраций (активностей) Na+ и K в котором проявляется стеклом натриевая или калиевая функция. В обсуждаемой работе для большого числа стекол разных силикатных систем систематически исследована зависимость специфичности металлических функций (натриевой и калиевой) от состава стекол. В исследования были включены стекла состава NasO—R,,0 —SiOa [где R-это В, Al, Ga, Fe(III), Sn(IV)]. Эти стекла, как мы показали в других работах, обладают натриевой функцией при pH 4 и выше [35—39]. [c.324]


Смотреть страницы где упоминается термин Ионные активности и элементы без переноса: [c.107]    [c.135]    [c.34]    [c.15]    [c.16]    [c.294]    [c.85]    [c.82]   
Смотреть главы в:

Определение pH теория и практика -> Ионные активности и элементы без переноса

Определение рН теория и практика -> Ионные активности и элементы без переноса




ПОИСК





Смотрите так же термины и статьи:

Активность ионная

Активность ионов

Ионное без переноса



© 2025 chem21.info Реклама на сайте