Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория химической связи и структура молекул

    Развитие органической химии в текущем столетии характ ризуется значительными достижениями в теоретической облает особенно в установлении природы химической связи, структур молекул и механизма химических превращений. В основе ра работки новых представлений, помимо теории строения и стере химической теории, легли также и новейшие достижения физи атомов и волновой механики. [c.228]


    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]

    При изложении теории химической связи, строения и свойств молекул рассмотрены метод молекулярных орбиталей МО ЛКАО, широко применяемый сегодня в практике расчетов строения электронной структуры и реакционной способности молекул, и наиболее информативный экспериментальный метод исследования — молекулярная спектроскопия. [c.3]

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]


    Современная теория химической связи дает удовлетворительные ответы на следующие основные вопросы 1) Почему и каким образом из свободных атомов образуются молекулы 2) Почему атомы соединяются друг с другом в определенных соотношениях 3) Каковы эти соотношения для различных химических элементов 4) Какова геометрическая форма молекул и как она связана с электронной структурой составляющих ее атомов  [c.31]

    Несмотря на существенные упрощения, эта теория до настоящего времени составляет основу для интерпретации данных ЯКР и во многих случаях дает удовлетворительные результаты. Она же служит для решения таких обратных задач, как суждения об электронной структуре и характере химических связей в молекулах, степени их ионности, степени двоесвязности, 5-характере или степени гибридизации АО. Конечно, попытки разделить разные факторы, влияющие на градиент электрического поля на ядре в молекуле, создает известную неопределенность в интерпретации интегрального эффекта квадрупольного взаимодействия с помощью теории Таунса и Дейли. Но строгой теории градиента неоднородного электрического поля на ядре в настоящее время нет, хотя попытки более строгого рассмотрения задачи делались. [c.108]

    Наконец, несмотря на усовершенствования, внесенные в теорию Вора другими учеными (была принята во внимание возможность движения электрона в атоме не только по круговым, но и по эллиптическим орбитам, по-разному расположенным в пространстве), эта теория не смогла объяснить некоторых важных спектральных характеристик многоэлектронных атомов и даже атома водорода. Например, оставалась неясной причина различной интенсивности линий в атомном спектре водорода не объяснялась тонкая структура спектров атомов, заключающаяся в том, что их отдельные линии расщепляются на несколько других. Сами количественные расчеты многоэлектронных атомов оказались чрезвычайно сложными и практически неосуществимыми. Теория ошибочно описывала магнитные свойства атома водорода, принципиально не могла объяснить образование химической связи в молекулах. [c.45]

    Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. Хотя этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул, все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял своего значения до настоящего времени в качественном понимании природы химической связи. [c.103]

    Э. Резерфордом (1911) ядерной модели атома, а Н. Бором (1913) — количественной теории атома водорода. К началу 20-х годов были разработаны основы электронной теории химической связи. Получили развитие учение о дипольной структуре молекул и теория межмолекулярного взаимодействия. В области химической термодинамики В. Нернстом были открыты важнейшие закономерности для низкотемпературных процессов и сформулирована тепловая теорема (1906). Это впервые дало [c.7]

    Правда, с течением времени химики все больше склонялись к мысли, что химическую связь в молекуле нельзя рассматривать как совершенно жесткое прикрепление атомов друг к другу, и именно поэтому некоторые из них выступали против использования понятия структуры или строения. Проблема внутренней динамики молекул возникла, в частности, в связи с обсуждением бутлеровской теории химического строения. Эта теория встретила резкие возражения со стороны Н. А. Меншуткина, который считал, что [c.93]

    Даже из краткого курса химии видно, что и в настоящее время химия находится в непрерывном развитии. К особенностям современной химии можно отнести более глубокое раскрытие основных законов и развитие теоретических ее основ (законов поведения электронов в атомах и молекулах, теории химической связи, разработка методов расчета структур молекул и твердых тел, теории скоростей химических реакций, растворов и электрохимических процессов и др.). [c.431]

    Теория химической связи за последние полвека претерпела значительные изменения, которые были обусловлены стремлением повысить эффективность теории в применении к более широкому кругу химических соединений и дать наиболее удовлетворительный ответ на основные вопросы. I. Почему и каким образом из свободных атомов образуются молекулы 2. Почему атомы соединяются друг с другом в определенных соотношениях и каковы эти соотношения для различных химических элементов 3. Какова геометрическая форма молекул и как она связана с электронной структурой образуюш их ее атомов  [c.169]

    Современная теория вулканизации, получившая всеобщее признание, объясняет происходящее при вулканизации изменение свойств каучука образованием сложной пространственной сетчатой структуры вулканизата. Под влиянием нагревания, а также воздействия серы, кислорода или других структурирующих веществ происходит усложнение молекулярной структуры каучука в результате образования поперечных химических связей между молекулами, т. е. структурирование каучука. Это могут быть химические связи посредством атомов серы, кислорода или валентные химические связи атомов углерода отдельных цепей. Кроме того, в результате вулканизации увеличивается межмолекулярное взаимодействие. [c.77]


    Основополагающие результаты получены Л. Полингом в цикле исследований структуры молекул. Ученый впервые рассчитал величины ионных радиусов, составил их таблицы, сформулировал некоторые общие правила образования ионных кристаллических структур, дал квантовомеханическое описание гомеополярной связи и решение проблемы направленности валентностей. Выдающимся вкладом в мировую науку являются работы Л. Полинга по теории химической связи н структуре сложных молекул. В последнее время интересы Л. Полинга сконцентрированы на проблемах молекулярной биологии. [c.5]

    Полинг Лайнус Карл (1901-1997), американский ученый, крупнейший специалист в области квантовой механики и строения молекул, теории химической связи, иммунохимии, структуры белков и молекулярной генетики. Иностранный член Российской Академии н к, один из инициаторов Пагуошского движения ученых за мир. Часть его книг переведена на русский язык Природа химической связи (М., Госхимиздат, 1947), Общая химия (М., Мир 1974) и др. [c.275]

    Наиболее стабильные молекулы можно описать одной-единственной валентной структурой, и, следовательно, должен существовать способ отобразить ее одной-единственной волновой функцией метода валентных схем. Однако чтобы сделать это, необходимо ввести в теорию химической связи два новых понятия. Одно из них — это концепция валентного состояния атома и второе — гибридизация орбиталей. Гибридизация уже была рассмотрена в рамках метода молекулярных орбиталей, однако она будет рассмотрена также и в методе валентных схем, так как именно здесь она и была впервые введена. [c.298]

    Согласно теории химической связи, наибольшей устойчивостью обладают внешние оболочки из двух или восьми электронов (электронные группировки благородных газов). Это и служит причиной того, что благородные газы при обычных условиях не вступают в химические реакции с другими элементами. Атомы же, имеющие на внешней оболочке менее восьми (или иногда двух) электронов, стремятся приобрести структуру благородных газов. Такая закономерность позволила В.Косселю и Г.Льюису сформулировать положение, которое является основным при рассмотрении условий образования молекулы При образовании молекулы в ходе химической реакции атомы стремятся приобрести устойчивую восьмиэлектронную (октет) или двухэлектронную (дублет) оболочки . [c.42]

    Предметом данной книги являются, с одной стороны, введение в теорию химической связи в объеме, необходимом для овладения полуэмпирическими методами квантовой химии (этому посвящена гл. 10, которой заканчивается методическая часть книги), а, с другой стороны, изучение взаимосвязей между строением молекул и их свойствами. Что касается свойств, под ними понимаются как статические характеристики (термохимические, электрические, магнитные, оптические), так и динамические характеристики, т. е. реакционная способность, определяемая константами равновесий и скоростей. Следует уточнить, как мы будем толковать понятие структура . В узком смысле слова под структурой понимается расположение атомов в молекулах, а также упаковка молекул в кристаллической решетке. То, что понимается под структурой в этом смысле, во многих случаях теперь определяется непосредственно методами рентгеноструктурного анализа. Что же касается интересующих нас проблем, мы будем чаще всего подразумевать под структурой исследуемого соединения его расчетные теоретические характеристики, которые сравниваются со свойствами, найденными экспериментально. [c.10]

    Физические и химические свойства атома или молекулы зависят от их электронного состояния. Удовлетворительные теории химической связи могут быть развиты на основе предположения, что структуры, состоящие из электронных пар или — более определенно — из электронных октетов, обладают минимальным запасом энергии и, следовательно, характеризуются максимальной стабильностью. Так, ионизация атомов при процессах переноса электронов приводит к образованию стабильных электронных октетов, а образование ковалентной связи представляет процесс обобществления электронов, приводящий к созданию стабильных электронных пар. [c.29]

    Книга посвящена новой и актуальной области науки — теории химической связи в твердых телах, которая впервые трактуется как один из разделов общей квантовой химии. В ней рассматривается влияние характера химической связи на особенности электронной (зонной) структуры и прослежены аналогии между химической связью в молекулах и твердых телах. Дано краткое изложение основ квантовой химии и зонной теории твердого тела, рассмотрен характер химической связи и электронное строение для простейших типов твердых тел ковалентных кристаллов элементов IV группы и других полупроводников. [c.415]

    Нужно рассказать учащимся о жизни замечательного русского ученого А. М. Бутлерова. Необходимо также сообщить учащимся следующие сведения. Немецкий химик Кекуле в 1857 г. высказал мнение, что углерод в органических соединениях имеет валентность, равную 4. Затем в 1858 г. Кекуле и Купер предположили, что углеродные атомы могут соединяться с другими углеродными атомами, образуя цепи. Химические формулы Купера были весьма схожи с современными. Купер был первым химиком, использовавшим линии между символами элементов для обозначения валентных связей. Однако только А. М. Бутлерову удалось суммировать все разрозненные теоретические данные и сформулировать основные положения теории химической связи в ее современном виде. Термин химическое строение был впервые применен А. М. Бутлеровым в 1861 г. Им было установлено, что необходимо изображать структуру каждого вещества одной формулой, которая должна показывать, каким образом каждый атом в молекуле связан с другими. [c.42]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45),—все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял своего значения до настоящего времени. [c.121]

    Следующим важным этапом в развитии теории химической связи было учение Бутлерова о структуре молекул, указывающее на порядок соединения атомов. Позже на основе этой концепции Вант-Гофф развил теорию направленной валентности. Эта теория привела к пространственным моделям молекул. [c.75]

    Могут найтись химики, полагающие, что чрезвычайно важным новшеством (иным, чем использование двух или большего числа валентных структур для описания состояния молекулы я считаю это последнее значительным новшеством скорее в области теории химического строения, чем в теории химической связи) явилось введение о, тс-описания для двойной и тройной связи и сопряженных систем вместо описания с помощью изогнутых связей. Я же утверждаю, что о, тс-описание менее удовлетворительно, чем описание с помощью изогнутых связей, что это нововведение является только преходящим и вскоре отомрет. Содержанием остальной части моего доклада будут доводы, подтверждающие это утверждение. [c.8]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Согласно простейшим представлениям о химической связи, устойчивость молекулы определяется существованием в ней отдельных двухэлектронных связей, соединяюпдих между собой пары атомов. Для подавляющего большинства молекул удается подобрать набор стандартных значений энергий связей, который позволяет воспроизводить экспериментальные теплоты образования молекул с точностью до 5-10 кДж. Однако для некоторых молекул результаты подобных расчетов значительно отклоняются от экспериментальных данных. Подлинная устойчивость таких молекул оказывается намного больше или, наоборот, меньше, чем предсказывают расчеты, основанные на представлениях простой теории локализованных связей. Появление подобных расхождений указывает, что в рассматриваемом случае простая модель локализованных связей неприменима. Молекулы с напряженной структурой могут оказаться менее устойчивыми, чем предсказывают тгрмодина. шческие расчеты, а молекулы с делокализацией электронов - более устойчивыми. [c.36]

    Очевидно, Сг = С4 = Сд, т.е. в (1.52) входят лишь два значения коэффициентов. Правда, энергия электронных состояний, отвечающих структурам (3), (4) И (5), выше чем структур (1) н (2) (так как в структурах Дюара одна из я-связей слабее остальных). Поэтому их вклад в величину ф будет меньше, чем вклад первых двух структур. Это означает, что в первом приближении можно не принимать во вннмаиме фз, ф< и фд, ограничиваясь Ф1 и фа. Подобный метод объяснения и расчета химической связи в молекулах получил назв.ание метода на-ложения валентных схем теории резонанса). В этом методе используют волновые функции вида [c.94]

    Пособие составлено соответствии с программой по физической химии для хи-иических специальностей химико-технологнческнх вузов и факультетов. В нем подробно изложены основные разделы курса физической химии квантовомеханические ОСНОБЫ теории химической связи, строения атомов и молекул, спектральные методы исследования молекулярной структуры, феноменологическая и статистическая термодинамика. термодинамика растворов и фазовых равновесий, электрохимии, химическая кинетика, гомогенный и гетерогенный катализ. [c.2]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Описание молекул требует изложения теории химической связи, в которой важное место занимает явление расщепления уровней. Следует обратить внимание, что наличие дискретных уровней и пространственные особенности орбиталей ведут к образованию пpaвильны, i геометрических структур — четко выраженных, например, в молекулах комплексных соединений. [c.77]

    Близкое к современному представление о молекулах сложилось еще в начале XIX в. и впервые было сформулировано А, Авогадро. Важным этапом развития учения о химической связи в молекулах была теория строения А. М. Бутлерова, согласно которой в соединениях имеет место строгая закономерность расположения агомов, а химическая связь ответственна за ра.чличия в свойствах соединения и сумму образующих его атомов. Далее следует отметить развитие А. Вернером в конце XIX в. представлений о координационных соединениях и их структурах. [c.234]

    В рамках метода рассеянных волн рассчитаны электронные структуры соединений лантаноидов и актиноидов (В. А. Губанов). В настоящее время аналогичные расчеты ведутся во многих научных центрах страны в тесной связи с использованием и развитием физических методов исследования (высокотемпературная масс-снектрометрия и электронография, УФ- и ИК-спектроскония, магнетохимия, рентгеновская спектроскопия и т. д.). Эти расчеты внесли важный вклад в развитие теории химической связи неорганических соединений, электронного механизма транс-н цнсвлияния в комплексах, в понимание особенностей структурно-нежестких молекул с распределенпым характером связи и т. д. [c.58]

    Действительное развитие теории валентности не было возможно до тех пор, пока после 1913 г. не было установлено значение атомного номера и Коссель и Льюис в 1916 г. не заложили основы современной теории химических связей. Коссель указал, что элементы, число электронов у которых близко к числу электронов у инертных газов, достигают устойчивой электронной конфигурации этих последних, теряя или приобретая соответствующее число электронов. Например, сера и хлор требуют добавления двух и одного электронов соответственно, а Са и К достигают аргоновой структуры, теряя два или один электрон, в результате чего образуются ионы S -, С1 , К" " и Са +. Связи в таких солях, как КС1 и aS, будут, следовательно, вызываться электростатическим притяжением между составляющими ионами. Такое объяснение было вполне достаточно для элементов, недалеко отстоящих от инертных газов, так как существование подобных ионов было уже известно. Однако по отношению к молекуле СН4 было не столь правдоподобнп полагать, что она имеет строение С - Свойства метана резко отличаются от свойств такой соли, как КС1. Теория Льюиса дополнила теорию Косселя и, как уже упоминалось, постулировала, что электрон может быть поделен между атомами, причем два поделенных электрона осуществляют химическую связь между ними, [c.58]

    Большинство кластеров, образованных металлами, не содержат необычных по валентности атомов углерода, подобных приведенным выше. Например, кластеры [Н111з(СО)24Н5 ]"- (где п = 2,3) построены из остова кристаллической решетки металлического родия, связанного с молекулами монооксида углерода. Тем не менее они разнообразны по геометрическим формам и образуют полиэдры всех конфигураций и размеров, что подвергает тем самым теорию химической связи проверке на универсальность. Интерес к кластерным соединениям не только теоретический как к соединениям с необычной структурой. Они нашли и практическое применение. Так, в Техасе (США) введен в строй завод, способный производить более 100 000 т в год уксусной кислоты из метанола и монооксида углерода с использованием родийорганического катализатора. Использование катализаторов такого типа становится все более актуальным из-за недостатка нефти и высоких цен на нее. [c.20]


Смотреть страницы где упоминается термин Теория химической связи и структура молекул: [c.21]    [c.128]    [c.433]    [c.7]    [c.8]    [c.29]   
Смотреть главы в:

Химия и радиоматериалы -> Теория химической связи и структура молекул




ПОИСК





Смотрите так же термины и статьи:

Молекулы связь

Связь теория

Теория химическои связи

Теория химической связи

Химическая связь

Химическая связь связь

Химическая теория

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте