Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы размеры и форма

    Цвет И прозрачность алмазов различны. Встречаются алмазы от бесцветных до темных (белые, голубые, зеленые, желтоватые, коричневые, красноватые, темно-серые). В зависимости от качества кристаллов (размера, формы, цвета, числа и вида дефектов) и назначения различают два вида алмазов ювелирные и технические. [c.344]

    Для кристаллизации дифенилолпропана запатентованы циркуляционные аппараты непрерывного действия, в которых получаются крупные и однородные по величине кристаллы ". Размер кристаллов существенно влияет на чистоту получаемого продукта. Крупные и однородные по величине кристаллы обычно чище мелких, так как с них хорошо смывается маточный раствор в центрифуге. Исключение составляют очень крупные кристаллы (более 2—5 мм), образующие друзы внутри друз находится маточный раствор с примесями, загрязняющими продукт. Необходимость выращивания крупных кристаллов вызывается и тем, что очень мелкие кристаллы трудно поддаются фильтрованию и центрифугированию. Большое значение имеет и форма кристаллов, которая изменяется в зависимости от условий их образования. [c.173]


    Смолы, содержащиеся в масляных фракциях нефти, неоднородны по структуре молекул. В их молекулах содержатся как нафтеновые, так и ароматические структуры, парафиновые цепи разных длины и степени разветвленности и атомы 5, О и N. При помощи фенола смолы можно разделить на растворимые и нерастворимые в нем [6]. В молекулах смол, не растворимых в феноле, содержатся длинные алкильные цепи, экранирующие циклические структуры и гетероатомы. Смолы, не растворимые в феноле, при совместной кристаллизации с парафиновыми углеводородами изменяют структуру кристаллов последних (рис. 40, а). Это объясняется ориентацией боковых цепей молекул смол и самой цепочки -парафина так, что полярные группы смол направлены наружу. В результате получаются крупные кристаллы неправильной формы. Поскольку полярность этих смол недостаточно велика, они не могут вызывать агломерацию кристаллов. В то же время, увеличение концентрации смол в растворе приводит к блокировке растущих центров кристаллов, затрудняя диффузию к ним молекул твердых углеводородов, что ведет к уменьшению размеров кристаллов. [c.134]

    Для низкомолекулярных алканов температура перехода одной кристаллической структуры в другую на десятки градусов ниже температуры плавления, в то время как для высокомолекулярных алканов этот температурный интервал составляет всего 3—16°С, а для некоторых вообще не Обнаруживается. При кристаллизации из неполярных растворителей, в том числе из нефтяных фракций, образуются кристаллы орторомбической формы. Характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей [14]. Из всех-углеводородов наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные алканы. При кристаллизации из растворов с полярным растворителем только алканы образуют кристаллы правильной ромбической формы. [c.191]

    Кристаллизаторы с псевдоожиженным слоем. Кристаллизация в псевдоожиженном слое помимо увеличения скорости процесса, способствует получению однородных правильной формы кристаллов размером 1—3 мм. [c.642]

    После того как образуется первое устойчивое твердое тело — кристалл размером Гх,— в сущности, начинается кристаллизация на поверхности твердого тела, которая идет с понижением уровня свободной энергии. Конечно, вовсе не обязательно, чтобы данное твердое тело вырастало в том же самом расплаве или паре. Довольно часто кристаллизация протекает на поверхности посторонних твердых тел, которые так или иначе попадают в отвердевающее вещество. Лишь бы они имели подходящий состав и строение. В ряде случаев в пересыщенный пар или расплав специально вносят затравку в виде готовых больших или малых кристаллов. Часто проводят кристаллизацию на подложке, т. е. на твердом теле, определенных размеров и формы, обладающем подходящими свойствами, например достаточной тугоплавкостью и смачиваемостью расплавом. [c.151]


    Аморфные осадки состоят из очень мелких кристаллов, размер которых обычно нельзя определить под микроскопом. Поверхность аморфных осадков очень велика так, поверхность 1 г сульфида ртути, полученного в обычных условиях осаждения, составляет 600 кв. м. В отдельности мелкие кристаллы аморфного осадка проходили бы через фильтр. Однако эти мелкие кристаллы уже при образовании коллоидных частиц связываются в более крупные агрегаты. Аморфные осадки, как было отмечено ранее, образуются в результате коагуляции коллоидных растворов и, таким образом, состоят из еще более крупных агрегатов неправильной формы, которые представляют сцепленные или переплетенные между собой очень мелкие кристаллы. [c.60]

    Однако резко противопоставлять аморфные тела кристаллическим не следует, так как многие вещества можно получить как в кристаллическом, так и в аморфном состоянии. Например, кварц . Ог существует в природе в кристаллическом (горный хрусталь) и аморфном состоянии (опал). Кроме того, современные рентгенографические и электронографические исследования показали, что во многих телах, которые раньше считали аморфными (например, аморфные формы кварца или углерода), расположение атомов не является вполне хаотичным. Они содержат мельчайшие зародыши кристаллов размерами 10- —10- м. И только чрезвычайно высокой вязкостью, которая быстро нарастает при охлаждении вещества, можно объяснить отсутствие дальнейшего развития (роста) этих кристаллов. [c.29]

    Размеры, форму и взаимное расположение кристаллов в металлах изучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении дает микроскопический анализ его шлифа. Из испытуемого металла вырезают образец и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выявляется структура образца, которую рассматривают или фотографируют с помош,ью металлографического микроскопа. [c.319]

    Этот эксперимент доказывает, что размер каждой грани тем больше, чем меньше скорость ее роста, и что кристалл меняет свою форму только за счет перестройки граней, которая осуществляется в результате переноса вещества с быстро растущей грани на медленно растущую. При нагревании вблизи температуры насыщения раствор становится слегка недонасыщенны.м, и в этот момент кристалл частично растворяется при охлаждении раствор становится слегка пересыщенным, и кристалл в этот момент растет. Кристалл как бы колеблется около состояния термодинамического равновесия, при этом развиваются именно те. медленно растущие грани, которые отвечают наиболее плотной, равновесной упаковке частиц. Чем более совершенным становится кристалл, тем медленнее происходит его геометрическое перестроение. Образовавшийся кристалл равновесной формы имеет ту же массу и объем, что и исходный шарообразный монокристалл. [c.249]

    Твердые растворы имеют определенный структурный мотив с двумя или более типами неэквивалентных структурных позиций. Типы позиций и занимающие их ионы различны в разных твердых растворах. Общая симметрия кристалла не нарушается при изменении состава, хотя некоторые детали микроструктуры кристалла, например форма и размер отдельной структурной позиции, могут зависеть от ее состава. [c.98]

    Перенос заряда в кристалле происходит за счет дефектов кристаллической решетки, когда вакансии занимаются свободными соседними ионами. Вакансии идеально соответствуют определенному иону в отношении размера, формы и распределения заряда, поэтому занять их могут только определенные подвижные ионы. Все другие ионы не в состоянии перемещаться в кристалле и не вносят вклад в процесс переноса заряда. [c.22]

    Присадки изменяют размеры, форму и строение частиц дисперсной фазы, создают на поверхности кристаллов парафина энергетический барьер той или иной природы, мешающий их сближению, что и приводит к улучшению реологических свойств обрабатываемых нефтей. [c.72]

    В зависимости от относительных размеров частиц, образующих кристалл, и типа химической связи (ее направленности) вещества образуют кристаллы различной формы, определяемой способом соединения частиц. Число этих форм ограничено. [c.152]

    Блеск металлической поверхности зависит от степени ее гладкости последняя определяется размерами, формой и расположением элементарных частиц, образующих поверхность металла. В отношении электролитических осадков высказываются различные и зачастую противоречивые взгляды на то, что считать определяющим для их блеска — размер кристаллов осадка или их ориентацию в каком-либо определенном направлении, которое вызывает преимущественное отражение света. [c.137]

    Как указывает К. М. Горбунова, для блеска электролитических осадков имеет значение не столько наличие какой-либо оси текстуры сколько ее тип, так что осадки без ориентации кристаллов могут давать лучший блеск, чем неблагоприятно ориентированные. Так, если кристаллы имеют форму куба и плоскости их граней параллельны плоскости основного металла, то даже при относительно больших размерах кристаллов осадок будет более блестящим, чем осадок с выступающими на поверхность вершинами кубов. [c.137]


    Вырастить кристалл в форме тоненькой пластинки не просто. Однако в указанном выше институте уже получают образцы размером 1x1 см и более. [c.526]

    Известно, что нефтяные углероды наряду с упорядоченными графитоподобными слоями содержат неупорядоченный углерод, который соединяет кристаллиты друг с другом. Межкристаллит-ные изменения сопровождаются упорядочением, в результате чего снижается межслоевое расстояние (с оо2) и происходит рост размеров кристаллитов по а и с и их сращивание с образованием кристаллов гексагональной формы со строго упорядоченной структурой базисных плоскостей. [c.215]

    Рассмотрим некоторые особенности распространения УЗК в металлических материалах. Металлические материалы, характеризующиеся поликристаллическим строением, в общем случае состоят из зерен кристаллов различной формы и размеров. Зерна формируются кристаллизацией из расплава или кристаллизацией в процессе термической обработки. Одно зерно может быть монокристаллом или состоять из двух и более фаз, раздробляющих зерно. Различие отдельных зерен между собой заключается в пространственной ориентации кристаллической решетки. Форма зерен может быть почти сферической, удлиненной или сплющенной в результате пластической деформации. Характерной особенностью кристаллического строения металлических материалов является анизотропия их свойств. [c.9]

    Установлено, что углеводороды всех гомологических рядов при кристаллизации из неполярных растворителей, в том числе и из нефтяных фракций, образуют кристаллы орторомбической формы, состоящие из параллельЕ1ых ромбических плоскостей. Кристаллы твердых углеводородов, образованных из разных гомологических рядов, различаются по размерам и числу ромбических плоскостей. Наиболее крупные и волокнистые кристаллы имеют парафиновые углеводороды. Нафтеновые и нафтеноароматические углеводороды характеризуются меньшим размером и меньшим числом ромбических плоскостей. [c.253]

    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    При совместной кристаллизации из углеводородных сред форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафинами, и чем больше концентрация таких углеводородов в смеси, тем меньше размер кристаллов. При кристаллизации из растворов в полярных растворителях только парафиновые углеводороды образуют кристаллы правильной орторомбической формы (рис. 49, а). Кристаллы твердых циклических углеводородов имеют форму ромба, но с усеченными острыми углами ромбических плоскостей (рис. 49, б, в). Такую же форму имеют и смешанные кристаллы парафиновых и циклических углеводородов (рис. 49, г, д), причем чем больше в смеси нафтеновых и особенно ароматических углеводородов, тем меньше размер кристаллов и больше их усеченность. Кристаллическая структура твердых углеводородов изменяется в присутствии смолистых веществ. В зависимости от характера смол либо образуются крупные кристаллы неправильной формы (совместная кристаллизация), либо происходит агломерация кристаллов при сохранении их орторомбической структуры (адсорбция смол на кристаллах). [c.155]

    Добавка полимерной присадки уменьшает размер кристалла 1[ормального парафина и приводит к перестройке структуры крис-1аллов из неправильной формы многогранников в кристаллы овальной формы. Структура же кристаллов изопарафинов имеет нид удлиненных пластинок. Добавка присадки к изопарафиновым углеводородам не меняет общей картины, размеры кристаллов практически не изменяются. [c.143]

    Гомогенные мембранные электроды. Гомогенные кристаллические мембраны обладают высокой селективностью, что дост гается ограничением перемещения всех ионов в кристалле, кроме основного. Вакансии в кристаллах соответствуют лишь определенным размерам, форме и распределению заряда ионов, поэтому их заполнение возможно лишь определенными видами ионов. Как правило, инородные ионы не могут войти в кристалл. Теория функционирования кристаллических мембран относительно проста. Такие электроды обладают теоретической ионной функцией. Влияние посторонних ионов может быть связано с изоморфным замещением и с некоторыми химическими реакциями, происходящими на поверхности электрода. [c.53]

    ГОРНЫЙ ХРУСТАЛЬ (греч. кг1з-1а11о5 — лед, кристалл) — минерал, бесцветный, прозрачная разновидность кварца, одна из кристаллических модификаций кремнезема 3102. Известны кристаллы Г. X. весом в несколько тонн. При нагревании до 1700° С Г. X. теряет кристаллическую форму, становится мягким и при охлаждении превращается в кварцевое стекло. Чистые однородные кристаллы Г. X. встречаются редко. Практическое значение имеют кристаллы размером не менее 3—5 см. (В СССР лучшие образцы Г. X. найдены на Урале, Украине, Кавказе, Памире, Алдане). Монокристаллы Г. X. выращивают в автоклавах. Прибавляя различные добавки, можно изменять свойства Г. х. например, Ое увеличивает показатель преломления, А1 — уменьшает его, Ре + придает зеленую окраску, Ре + — бурую, Со — синюю. Г. X. издавна применяют для изготовления ваз, чащ, скульптур однородные кристаллы Г. X. являются ценнщм техническим сырьем их используют в радиотехнике для производства излучателей ультразвуковых волн, изготовления призм спектрофотометров, линз, в оптических приборах, в точной механике и т. д. Окрашенные кристаллы Г. X. — драгоценные камни. [c.79]

    Кристаллу сферической формы отвечают сферические области в пространстве Фурье (рис. 1.7, а) пластинчатому кристаллу — стержни ( штабы ), вытянутые вдоль нормали к пластинке (рис. 1.7, б), игольчатому кристаллу — диффузные области в форме пластинок (рис. 1.7, в). Интерференционное расширение максимумов интенсивности растет по закону гиперболы и особенно велико для малых значений Л/ , т. е. для кристаллов коллоидальных размеров (Ьг = МгагС 10 см), что можно использовать для определения их средних размеров и формы. [c.36]

    Наличие в растворе посторонних веществ может вызвать изменение внешней формы растущего кристалла. Так, хлорид натрия в водном растворе кристаллизуется в виде простых кубов (рис. 5.8, а), если же раствор содержит немного мочевины 0(NH2)2. то кристаллы приобретают форму кубов со срезанными вершинами. При еще большем содержании мочевины в растворе размер граней, срезающих вершины куба, увеличивается (рис. 5.8, б, а), а при достаточно высокой концентрации моче-ьины именно эти грани формируют кристалл и вместо куба получается октаэдр (рис. 5.8, г). По составу и структуре октаэдрические кристаллы хлорида натрия ничем не отличаются от кубических и практически не содержат мочевины. Это явление. можно объяснить по-разному молекулы мочевины адсорбируются или на гранях куба, способствуя их быстрому росту, или же, что более вероятно, — на гранях октаэдра, замедляя их рост (скорость самопроизвольно растущих граней кристалла в условиях, близких к равновесным, должна быть минимальной), В данном случае проявляется каталитическое влияние постороннего вещества (мочевины) на скорость роста отдельных граней кристалла (хлорида натрия). [c.249]

    При обратном соотношении ско ростей, когда линейная скорость роста кристаллов начинает преобладать, отложение имеет грубую к ристаллич0скую структуру. Такие металлы, как медь, олово, свинец, серебро, при использовании растворов их простых солей, не содержащих поверхностно активных добавок, выделяются В виде крупных кристаллов, размеры которых превышают 10 см.. Несколько меньш-е кристаллы образуются при электро-осаждении цинка и кадмия (10 см). Таким, образом, один и тот же металл может быть получен на катоде в различной форме специальным подбором условий и режима электролиза можно существенно влиять на структуру электролитических осадков. [c.368]

    Природный диоксид марганца имеет несколько модификаций пиролюзит, полиалит и рамсдеелит. Из-за различия строения кристаллических решеток, размеров кристаллов, их формы модификации диоксида марганца существенно отличаются по своим свойствам. Наиболее активна так называемая у-модифи-кация (рамсдеелит). [c.188]

    Двуокись марганца известна в виде нескольких кристаллических разновидностей (модификаций), различающихся строением кристаллической решетки. Наиболее полная и удобная классификация разновидностей двуокиси марганца дана Глемзером и Гат-товым. По этой классификации имеется несколько модификаций — а (альфа), р (бета), "у (гамма), 6 (дельта), е (эпсилон), т] (эта), различающихся размером кристалла, его формой, особенностями взаимного расположения кристаллов. Кроме того, в пределах каждой модификации существует двуокись марганца, кристаллы которой имеют в той или иной степени скристаллизованную структуру. Такие разновидности называют образцами с разной степенью кристалличности . Особенности строения кристаллической решетки играют существенную роль для характеристики качества двуокиси марганца как активного вещества источников тока. Строение кристаллов определяют рентгенографическим способом. Расстояние [c.54]

    В предкристаллизационной стадии дегидрирование практически завершается, а затем протекает деструкция упрочненных осколков молекул, что обеспечивает подвижность кристаллитов на стадии кристаллизации. После предварительного ориентирования относительно друг друга кристаллиты срастаются и образуют кристалл гексагональной формы со строго упорядоченной структурой базисных плоскостей. Межслоевое расстояние при этом уменьшается с 3,43 до 3,358А, что является характерным для предельно графитированного углерода. Межслоевое расстояние и другие размеры кристалла, а также характер и распределение пористости в массе графита являются важными характеристиками, оказывающими существенное влияние на его физико-химические и механические свойства. [c.228]

    Ситаллом называется кристаллический материал, полученный тонкой объемной кристаллизащ1сй расплава стекла определенного состава в уи<е отформованном изделии. Свойства ситаллов зависят от химического состава исходных стекол, размеров, формы и ориентации кристаллов, минералогического [c.374]

    Известно несколько разновидностей диоксида марганца, различающихся строением кристаллических решеток. В настоящее время классифицируют а-, -, v-, 6-, е-модификации. Кроме того, каждая модификация имеет разновидности. Различие в свойствах МпОг, полученного разными методами, объясняется не только строением кристалличес1 ой решетки, но и размерами кристаллов, их формой и взаиморасположением. [c.204]

    При равномерном осаждении металла на противоположные стороны углублений происходит геометрическое выравнивание. На формирование микрорельефа поверхности электроосажден-ных металлов влияют также особенности процесса электрокристаллизации. Размеры, форма отдельных кристаллов, ступени роста и дислокационные искажения — все это в совокупности определяет так называемую кристаллическую шероховатость. [c.268]

    Цианамид свинца РЬСЫа — основной пигмент лимонножелтого цвета. Частицы пигмента состоят из игольчатых кристаллов орторомбической формы размером до 5 мкм [24]. Плотность цианамида свинца 6000—6200 кг/м , маслоемкость 18—24 г/100 г пигмента. В воде практически нерастворим, однако подвергается медленному гидролизу с образованием оксида свинца и аммиака (или карбоната аммония). В кислотах растворяется легко. [c.61]


Смотреть страницы где упоминается термин Кристаллы размеры и форма: [c.404]    [c.131]    [c.91]    [c.228]    [c.152]    [c.87]    [c.152]    [c.524]    [c.560]    [c.128]    [c.13]    [c.69]    [c.442]   
Цеолитовые молекулярные сита (1974) -- [ c.28 , c.273 , c.355 , c.361 , c.388 , c.389 , c.390 , c.391 , c.392 , c.393 , c.394 , c.395 , c.396 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллы форма



© 2024 chem21.info Реклама на сайте