Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота осаждение органическими основаниями

    Полученные сапониновые фракции очищают повторным пере осаждением, что, однако, не приводит к полной очистке от полярных onyт твyюш x веществ неорганических примесей, моно-и олигосахаридов, гликозидов других классов, органических кислот и др. Ряд методов основан иа способности сапонинов образовывать нерастворимые в воде или водном спирте соли с гидр01жи-дом бария или ацетатом свинца и комплексы с холестерином, танинами, белками. Соли затем разлагают угольной или серной кислотами холестериновые комплексы — извлечением холестерина бензолом, толуолом, этиловым эфиром или пиридином таниновые — кипячением с водной суспензией оксида ципка белковые — извлечением гликозидов подходящими органическими растворителями. [c.45]


    После нагревания щелок содержал 13,3% твердых веществ с 1,94% метоксилов. Для проведения осаждения порция в 100 г этого щелока смешивалась с раствором органического основания в эквимолярном количестве разбавленной серной кислоты или с НМТ в воде. Сравнение результатов осаждения показало, что бис осаждало 22, БПА —67, НМТ — 63, ПАН —80 и ПАА — 86% метоксилов в отработанном щелоке. [c.122]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]

    Щавелевая кислота. Основным химическим методом определения щавелевой кислоты является метод, основанный на осаждении ее хлористым кальцием, с последующим отделением осадка оксалата кальция, растворением его в серной кислоте и титровании перманганатом [2, 4, 6, 7, И]. При этом для устранения влияния других органических кислот, в том числе винной, добавляют борную кислоту. Большие количества белка в продукте удаляют солями цинка [11]. [c.222]

    Сопи сульфокислот с органическими основаниями. Многие соли, полученные из ароматических сульфокислот и различных аминов, обладают определенной температурой плавления, мало растворимы в воде и поэтому могут быть применены для разделения и идентификации как аминов, так и сульфокислот. Так, например, хини-зарин-2-сульфокислота (1,4- диоксиантрахинон- 2- сульфокислота) предложена для осаждения различных простых алифатических аминов и аминокислот [18]. Сульфокислота может быть затем получена обработкой соли амина гидроокисью бария с последующим разложением бариевой соли серной кислотой. В одной из более новых работ [19] приводятся данные о величине произведения [c.199]


    При выборе метода выделения фенола, встречающегося в природе, необходимо учитывать не только свойства соединения, как упоминалось выше, но также и химический состав биологического источника. Растительный материал состоит в основном из нерастворимой целлюлозы и лигнина, а в свежем виде может содержать также большое количество (70—80%) воды. Кроме того, могут присутствовать хлорофилл, воски, жиры, терпены, сложные эфиры, растворимые в воде соли, гемицеллюлозы, сахара и аминокислоты. Из свежего или сухого материала, как правило, сначала выделяют с помощью неполярного органического растворителя (например, петролейного эфира, гексана, бензола, хлороформа или эфира) нефенольные, неполярные вещества. Фенольные соединения можно затем выделить путем экстракции ацетоном, этанолом, метанолом или водой, причем выбор растворителя определяется числом гидроксильных групп и остатков сахара в молекуле. В некоторых случаях растительные материалы подвергаются непосредственной экстракции щелочью, но это не всегда приводит к хорошим результатам. Фенолы из растительного материала затем очищаются путем ряда экстракций и осаждений. С этой целью сырой материал переносят в несмешивающийся растворитель, такой, как эфир, бутанол или этилацетат, и смесь последовательно экстрагируют разбавленными растворами оснований в порядке возрастания активности сначала ацетатом натрия (для удаления сильных кислот), а затем бикарбонатом натрия, карбонатом натрия и едким натром. Водные экстракты, содержащие искомые продукты, подкисляют и вновь экстрагируют бутанолом, эфиром или этилаце-татом. Процедуру повторяют до получения кристаллического продукта. Подобное фракционирование в настоящее время осуществляется путем автоматической подачи несмешивающихся растворителей по принципу противотока (Хёрхаммер и Вагнер [9]). Фенолы можно отделять от других продуктов, содержащихся в растениях, путем осаждения с помощью нейтрального или основного ацетата свинца. Этим методом до некоторой степени отделяются о-диоксисоединения (дают осадок) от монозамещенных соединений (не дают осадка). Соли свинца разлагают серной кислотой, сероводородом или катионообменными смолами и свободные с )енолы элюируют из неорганических солей спиртом. [c.36]

    Для определения кальция в нейтрализате, бражке и барде, где он содержится в виде солей серной и органических кислот, предназначен метод, основанный на реакции осаждения каль-. ция в виде щавелевокислого кальция [44] [c.132]

    Для вольфрама Сендел [12] предложил более детальный метод, основанный на разложении силикатной породы плавиковой и серной кислотами. Вольфрам отделяют от железа и титана осаждением щелочью, а от молибдена осаждением последнего в виде сульфида с сурьмой в качестве соосадителя. Этот метод отделения был критически изучен Чаном и Райли [13], которые нащли, что при низких содержаниях вольфрама некоторое количество его соосаждается в виде сульфида с молибденом и сурьмой. В данном методе было также замечено обесцвечивание органических экстрактов. Нижний предел обнаружения вольфрама для этого метода составляет 5- 10 % (при навеске 1 г), чувствительность метода меньще, чем для молибдена, и едва ли достаточна для больщинства основных пород. [c.311]

    Разрушение органических веществ. Органические соединения, содержащие гидроксильные группы (например, сахар, глицерин, соли винной кислоты и другие) с ионами А1з+, rЗ . Сц2+ и Мп2+, образуют устойчивые внутрикомплексные соединения, растворимые в воде. Поэтому в присутствии подобных органических веществ ке происходит осаждение гидроокисей упомянутых металлов, и для открытия катионов эти органические вещества необходимо предварительно удалить. Способ удаления основан на том, что органические вещества окисляются смесью серной и азотной кислот, превращаясь в СОо и Н.,0. [c.621]

    Для определения двуокиси кремния в силикатных минералах предложен объемный метод, также основанный на осаждении органическими основаниями кремнемолибденового комплекса. А. К. Бабко разработал метод осаждения кремнемолибденовой кислоты пиридином. Кристаллический осадок желтого цвета, состава (Ру)4Н4[5 (Моз01 )4] растворяют в серной кислоте, молибден восстанавливают металлическим кадмием и титруют 0 1 н. раствором, перманганата калия. [c.84]

    Тантал издавна применяется при производстве электрических лампочек кроме того, в настоящее время его начали применять при изготовлении химической аппаратуры в качестве материала, весьма устойчивого в отношении коррозии. Это—единственный металл, устойчивый к действию соляной кислоты. Тантал обычно встречается вместе с ниобием, который получил применение в атомных реакторах. Благодаря растущей потребности интерес к обоим металлам непрерывно увеличивается. В последние годы разработаны промышленные методы разделения, основанные на фракционированной экстракции по ним получают оба металла высокой степени чистоты. Эти методы гораздо производительнее, чем классический кристаллизационный метод Мариньяка [494] или другой промышленный метод [493] осаждения фторотанталата калия и фторониоби-ата калия из разбавленной фтористоводородной кислоты. По экстракционным методам оба металла переводятся в окисные или хлористые соединения, растворяются во фтористоводородной, соляной или серной кислоте и экстрагируются одним органическим растворителем или смесью из нескольких. [c.449]


    Классическая реакция эпимеризации обычно проводится в водных ра- створах свободной альдоновой кислоты, получаемой из ее кальциевой соли осаждением иона кальция щавепевой или серной кислотой, при 135° С в течение 3 ч или при 100° С в течение 48 ч в присутствии пиридина [217]. Эпимеризацию осуществляют также в глицерине [2731. Показано [237, 285], что хорошие результаты дает эпимеризация кальциевых солей альдоновых кислот в присутствии органических гетероциклических оснований или окислов щепочноземельных металлов в этом случае процесс связан только с однократной обработкой растворов щавелевой или серной кислотой (вместо двукратной). Арабонат кальция подвергают эпимеризации также в водном аммиаке в течение 4 ч при 140° С под давлением [277]. [c.543]

    Разработка метода потребовала изучения ряда вопросов выбора (КИСЛОТЫ для разложения, выяснения влияния летучих примесей и добавки апротонного раство рителя. В основу метода были положены реакции разложения карбонатов кислотой и осаждания углекислоты катионами металла, дающего нерастворимую соль. Соляная кислота, используемая в аналитической практике для ра)Зложения карбонатов, в данном случае е может быть применена, так как выделяющийся при отгонке газ (НС1) взаимодействует с Ва(0Н)2. Была выбрана серная кислота. При этом выяснилось, что на точность анализа влияет концентрация кислоты. Применение ЛО—20%-ной кислоты исключается. При проведении холостошо опыта выделяются кислые газы (типа SO2), участвующие в реакции осаждения, и величина поправки превышает расход 0,1-н. Ва(0Н)2, идущего на рабочую пробу. Последнее объясняется тем, что кислые соединения образуют комплексы с органическими основаниями, имеющимися в фенолятах [2], и не попадают в дистиллят. [c.160]

    Осаждению основного селенита мешают H2F2 и органические оксикислоты. При длительной обработке основного селенита избытком селенистой кислоты (нагревание в течение 5—20 час. при 80—100° С) образуется нормальный селенит 2г(5еОз)2, который представляет собой кристаллический белый порошок. Серная кислота способствует превращению основного селенита в нормальный. Соль может быть высушена без разложения при 200° С или прокалена до двуокиси. Нормальный селенит почти не растворяется в горячей соляной кислоте, с большим трудом растворяется в горячей H2SO4 (1 1). Нормальный селенит может быть использован как для гравиметрического, так. и для титриметрического определения циркония иодометрическим методом. Титриметрический метод, основанный на иодометрическом титровании Se, предложен Смитом [752] и более подробно исследован другими авторами [388, 741—743] он имеет значение при определении малых количеств Zr. [c.56]

    Согани и Бхаттачария [353] считают М-фенил-М-фенилазогид-роксиламин лучшим реагентом для гравиметрического определения палладия. Желто-коричневое соединение ( i2HioNsO)2Pd осаждалось в интервале pH 1,6—8 и имело хорошие физические характеристики оно может использоваться в качестве весовой формы и имеет удобный фактор пересчета. При длительном кипячении избыток реагента можно уменьшить, что является преимуществом метода. Этот реагент нового типа легко синтезируется, что позволит с успехом применять его вообще для определения катионов. Однако приведенные данные и методика не дают основания предпочесть его диметилглиоксиму и другим органическим осадителям. Для разделения палладия и платины необходимо выпаривать раствор, содержащий оба металла, до паров серной кислоты, что осложняет метод. Для устранения помех со стороны меди, которая обычно сопутствует платиновым металлам и затрудняет их определение, в данном случае предложено подкислять раствор до pH 2—2,5 для увеличения селективного осаждения палладия, что по сравнению с диметилглиоксимом ограничивает возможности метода. [c.51]

    Гравиметрическими н титрнметрическими методами. Авторы [157] рекомендуют спектрофотометрическии метод, так как, по их мнению, гравиметрические разделения и определения длительны и содержат такие источники ошибок, как неполнота осаждения и соосаждение других элементов. Однако это мнение ошибочно лучший из трех методов, предложенных этими авторами [157], основанный на образовании и экстракции комплекса палладия с фенилтиомочевиной, не достигает точности некоторых гравиметрических методов. Более того, даже единичное определение по методике, требуюшей разрушения органических веществ и обработки царской водкой и соляной кислотой, вряд ли быстрее гравиметрического определения. Поскольку серная кислота мешает, этот метод нельзя применять для анализа корольков после обработки их серной кислотой. Колориметрическое определение палладия в виде комплексного бромида рекомендуется для определения больших концентраций. После некоторых изменений метод можно применять для анализа концентратов платиновых металлов. [c.239]

    Косвенный атомно-абсорбционный метод определения миллиграммовых количеств иода в органических соединениях основан на его осаждении в виде иодида серебра и определении количества осажденного серебра. В микростакан помещают навеску пробы, содержащей около 50 мг иода, 3 г пероксида натрия, 250 мг нитрата калия и 100 мг сахарозы, переносят в микробомбу и нагревают на микрогрелке. Полученную массу растворяют в 50—60 мл воды, кипятят до разложения образованного пероксида водорода, раствор переводят в мерную колбу вместимостью 100 мл и доливают воду до метки. К 10 мл раствора добавляют серную и азотную кислоты до окрашивания метилового оранжевого в розовый цвет, для восстановления Юз до 1 добавляют 10 мг сульфата гидразина и выдерживают 15 мин на кипящей водяной бане. Иод осаждают избытком 0,005 Л1 раствора нитрата серебра, осадок отфильтровывают на фильтре синяя лента, промывают водой, сразу растворяют в 10%-ном растворе иодида калия, доводят объем раствора водой до 100 мл, разбавляют еще в 10 раз 10%-ным раствором иодида калия и измеряют абсорбционный сигнал серебра по линии [c.261]


Смотреть страницы где упоминается термин Серная кислота осаждение органическими основаниями: [c.174]    [c.50]    [c.143]    [c.236]    [c.607]   
Аналитическая химия серы (1975) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота органическая

Органические основания

Основания и кислоты



© 2025 chem21.info Реклама на сайте