Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод источники для организма

    Еще сравнительно недавно единственным источником исходных материалов для получения органических соединений были природные продукты (в виде животных или растительных организмов и их останков), т. е. вещества уже сами по себе более или менее сложного состава и строения. Напротив, в настоящее время все более выдвигаются каталитические методы синтеза органических соединений, исходя из п р о-с т е й щ и X производных углерода, главным образом СО и СО2. В частности, взаимодействием их с водородом могут быть получены (и уже технически получаются) такие практически важные вещества, как высшие предельные и непредельные углеводороды, СНзОН и другие спирты, а на взаимодействие СО2 с NH3 основано техническое получение карбамида ( 1 доп. 51). [c.569]


    В настоящее время общепризнано, что цикл Кальвина является основным механизмом автотрофной ассимиляции углекислоты. Последняя у большинства фотосинтезирующих прокариот восстанавливается с помощью фотохимически образованной ассимиляционной силы — АТФ и восстановителя. Однако и АТФ, и восстановитель (НАДФ-Нз или НАД-Нг) — центроболиты, образующиеся на разных метаболических путях. Поэтому нельзя рассматривать восстановительный пентозофосфатный цикл ассимиляции СО2 строго привязанным только к фотосинтезу. У большой группы хемоавтотрофных прокариот этот путь фиксации СО2 сочетается с темновыми окислительными процессами получения энергии. Важно отметить только, что это основной путь ассимиляции СО2, если последняя служит единственным или главным источником углерода для организма. [c.253]

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]

    Скорость роста бактерий. Показателем окисления углеводорода или битума микроорганизмами является рост культуры бактерий на материале, который служит единственным источником углерода. Это обоснованный показатель, так как рост может происходить только тогда, когда микроорганизм окисляет подложку. С ростом микроорганизмов их количество возрастает и среда мутнеет. Можно легко наблюдать за ростом организмов путем их подсчета через различные промежутки времени или путем. измерения помутнения (рис. 5.1 и 5.2). Подсчет или измерение помутнения не дает достаточной информации о том, какие биохимические процессы протекают в данной среде. Следует также учесть неизбежные ошибки при подсчете бактерий. Организмы могут быть извлечены из среды после завершения роста или на различных его стадиях, а среду подвергают анализу для определения промежуточных и конечных продуктов процесса микробиологического распада. [c.180]


    Исследования, рассмотренные обобщенно в настоящем разделе, позволяют установить три важных факта 1) введение метильной группы в молекулу предшественника холина или креатина осуществляется при помощи процесса, который на его ранних стадиях и при любой скорости неидентичен с переносом метильной группы, как таковой , т. е. отличается от процесса, который мы в соответствии с данными Дю Виньо относили к трансметилированию 2) двуокись углерода не является источником метильной группы (обстоятельство, имеющее важное значение в других областях биохимии в связи с вопросом о связывании двуокиси углерода) 3) организм нельзя считать полностью зависимым от вводи- [c.214]

    Источники углерода благодаря различной химической природе и неодинаковой степени окисленности оказывают существенное, но не равнозначное влияние на развитие продуцента и образование им антибиотика. Иногда на одних источниках углерода развитие организма и биосинтез антибиотика происходят хорошо, на [c.70]

    Баланс pH в организме поддерживается даже во многих экстремальных ситуациях благодаря сочетанию буферного действия крови, учащения дыхания и работы почек. Изменение скорости дыхания влияет на концентрацию растворенного диоксида углерода, которая, как мы уже видели, составляет главный источник кислоты в крови. [c.461]

    Источник энергии. Организмы, ассимилирующие углеводороды или компоненты битума, не ограничиваются этими материалами в качестве источника углерода, необходимого для своего роста. Для этой цели большинство организмов, окисляющих углеводород, предпочитают более сложные источники энергии, такие, как углеводы, жиры и протеины при высоком содержании этих веществ в среде организмы постепенно будут терять большую часть своей способности к окислению углеводорода (см. рис. 5.2). [c.184]

    Генетическая инженерия — важнейший прогрессивный способ изменения генетической программы организма в целях создания высокопродуктивных штаммов промьпштенных микроорганизмов. Успехи современной генетической инженерии сушественно влияют на промышленную биотехнологию. Яркий пример больших возможностей генетической инженерии — создание во ВНИИ генетики и селекции промышленных микроорганизмов штамма Е. oli для получения треонина. В результате были изменены не только регуляторные свойства фермента аспартаткиназы, но и питательные потребности штамма. Введение в геном бактерии нового гена обеспечило бактерии возможность использования в качестве источника углерода сахарозу, основного дисахарида традиционного промышленного сырья — свекловичной мелассы. Перечисленные манипуляции наряду с амплификацией плазмид, содержащих оперон треонина, позволили значительно увеличить производительность штамма бактерии и получить за 40 ч ферментации 100 г L-треонина на 1 л культуральной жидкости. Учитывая исключительные способности штамма Е. соН к сверхсинтезу L-треонина, японская фирма Адзиномото приобрела в 1982 г. лицензию на использование российского штамма — продуцента треонина для организации собственного производства. [c.50]

    Органические соединения особенно важны тем, что являются конструктивным и энергетическим материалом животных и растительных организмов. Источниками их получения служат прежде всего растительные и животные организмы — своеобразные химические лаборатории, в которых протекает множество сложнейших реакций. Так, в зеленых растениях исходные вещества для синтеза — простейшие соединения (СОз и минеральные соли). Животные организмы для жизнедеятельности получают в готовом виде довольно сложные органические соединения (углеводы, жиры, белки), синтезированные растениями. В организме человека и животных преобладают окислительные процессы, приводящие в конечном счете к превращению химической энергии в тепловую и образованию простейших конечных веществ, в основном оксида углерода (IV) и воды. Азот выделяется в составе мочевины. Огромное количество органических веществ получают из древесины, торфа, горючих сланцев, [c.86]

    В зависимости от того, в какой хим. форме живые организмы способны усваивать из внеш. среды углерод, они делятся на две большие группы-автотрофы и гетеро-трофы. Для первых осн. источником углерода служит СО2, для вторых-разл. орг. соединения. Автотрофное питание осуществляют зеленые растения и фотосинтезирующие бактерии, гетеротрофное-животные и грибы. У микроорганизмов встречаются тот и др. тшш питания. О.в. автотрофных организмов является по преимуществу анаболическим, гетеротрофных-катаболическим. Основу пластического обмена составляет органический обмен. Традиционное разделение его на углеводный обмен, липидный обмен и обмен азотсодержащих соединений обусловлено большой распространенностью в живой природе соед. этих классов и различием их свойств. [c.310]

    Фотосинтез. — Весь сложный органический материал, из которого построены зеленые растения, синтезируется из дву-i окиси углерода — единственного источника углерода, — воды и неорганических солей, входящих в состав почвы. Животный организм не способен начинать синтез, исходя из таких простыв соединений, и поэтому целиком зависит от органического материала, который он получает с пищей. Так как жиры и белки растений, по всей вероятности, образуются из углеводных предшественников, а не наоборот, то очевидно, что углеводы являются первичными продуктами фотосинтеза. В суммарном процессе, выражаемом уравнением [c.579]


    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Пищевые продукты играют важную роль, поскольку служат источником энергии, позволяющей производить работу, и источником теплоты, поддерживающей необходимую температуру тела. Пищевые продукты выполняют эту роль благодаря тому, что в организме окисляются кислородом, поступающим из воздуха в легкие и переносимым в ткани гемоглобином крови. Конечные продукты окисления большей части водорода и углерода, входящих в состав пищевых продуктов, представляют собой воду и двуокись углерода. [c.406]

    В настоящее время, несмотря на то что многие соединения углерода все еще удобнее выделять из растений или животных, большинство из них получают синтетически. В качестве сырья используют иногда такие неорганические соединения, как карбонаты или цианиды, но чаще органические соединения синтезируют из других органических соединений. Существует два огромных природных источника, из которых можно получить простейшие органические соединения нефть и уголь. (Оба источника являются органическими в старом смысле этого слова, поскольку и уголь и нефть представляют собой продукты разложения растительных и животных организмов.) Эти простейшие органические соединения используются как строительный материал при синтезе более сложных соединений. Что же характерно для соединений углерода, что заставляет рассматривать их отдельно от соединений остальных ста с лишним элементов периодической системы На этот вопрос, вероятно, можно ответить так число соединений углерода чрезвычайно велико, и их молекулы могут быть очень большими по размеру и сложными по строению. [c.9]

    Самые высокие требования предъявляются к питьевой воде. Государственный стандарт на воду, используемую для питья и в пищевой промышленности (ГОСТ 2874—73), определяет благоприятные для человека органолептические показатели воды вкус, запах, цвет, прозрачность, а также безвредность ее химического состава и эпидемиологическую безопасность. Одни и те же требования предъявляются к воде из любого источника водоснабжения независимо от способа ее обработки и конструкции водозабора и водопровода. Вкус воды обусловлен растворимыми в ней веществами (табл. 63). Нередко неприятный привкус и запах сообщают воде продукты разложения животных и растительных организмов, например сероводород. Напротив, кислород, диоксид углерода, небольшое количество гидрокарбоната кальция, растворенные в воде, придают ей приятный, освежающий вкус. Питьевая вода в любое время года не должна содержать менее 4 г/м кислорода, а наличие в ней минеральных примесей не должно превышать следующих величин  [c.196]

    Жизненный цикл. Этот цикл тесно связан с углеродом атмосферы и гидросферы. В атмосфере источниками углекислого газа служат дыхание гетеротрофных организмов, гниение и горение органических веществ, газообмен с гидросферой, выветривание пород, вулканизм. Запас углерода атмосферы расходуется в основном на фотосинтез в зеленых растениях суши и на газообмен с гидросферой. В гидросфере посредством фотосинтеза, осуществляющегося водными растениями, диоксид углерода попадает в растительное вещество, на базе которого развивается животный мир гидросферы.-В то же время углекислый газ выделяется в воду при дыхании гетеротрофов. [c.207]

    Некоторые микроорганизмы способны разрушать молекулу нафталина, используя ее в качестве источника углерода. Этот процесс описан для спороносных бактерий, коринебактерий, организмов рода Pseudomonas. Деградация молекулы нафталина происходит в соответствии с общими принципами метаболизма ароматических соединений - гидроксилирование, расщепление одного из колец, образование катехола. [c.113]

    Характеристические соединения. Простейшими соединениями углерода с кислородом являются диоксид СОа (углекислый газ), оксид СО (угарный газ) и диоксид триуглерода С3О2 (недокись). Диоксид углерода играет исключительно важную роль в разнообразных процессах живой и неживой природы. Кроме того, он, как и оксид СО, является важнейшим техническим продуктом для народного хозяйства. Оксид С3О2 неустойчив и практического применения не имеет. Диоксид СОз является постоянной составной частью воздуха, образуется при всевозможных процессах окисления органических веществ, например при дыхании живых организмов, брожении, горении топлива, выбрасывается при вулканических извержениях и выделяется из вод многих минеральных источников, а также в процессе обжига известняка и других карбонатных порол. [c.184]

    Доноры водорода и источники углерода. Все организмы, использующие в качестве доноров водорода органические соединения, называют органотрофными. Их противопоставляют литотрофным организмам, способным использовать неорганические доноры электронов (Нз, NH3, H2S, S, СО, Fe и др.). Понятия же автотрофные и гетеротрофные употребляют в микробиологии в более узком смысле-они касаются только происхождения клеточного углерода автотрофными называют те микроорганизмы, которые могут получать весь или почти весь углерод путем фиксации СО2, а гетеротрофными -те, которые получают его в основном из органических соединений. [c.185]

    Фотоавтотрофные организмы в качестве источника энергии для синтеза органических соединений из неорганических материалов используют солнечное излучение. Источником углерода для этих организмов служит диоксид углерода. Хемогетеротрофные организмы для синтеза собственных органических веществ используют углерод, содержащийся в уже синтезированных автотрофами ор-ганичесюк соединениях. Источником энергии в данном случае служат химические реакции. [c.340]

    Важной частью любого исследования чистой культуры является состав среды, в которой происходит рост организмов. Сложная питательная среда типа питательного бульона, часто используемая в бактериологических лабораториях, непригодна для проведения работ с битумами. Такие среды состоят из органических материалов типа пептонов или мясных экстрактов и углеводов в качестве источника углерода и энергии для роста микроорганизмов. В такой среде организмы, которые могут разрушать битум или углеводород, как правило, отдают предпочтение углеводу, а не углеводороду. Поэтому для исследования действия микроорганизмов на битумы нужно получить химически определенную среду, содержащую азот, фосфор, серу и ионы металлов, необходимые для роста, но не содержащую углеводов или каких-либо других легко ассимилирующихся форм углерода. Такой средой является состав, предложенный Филлипсом и Трекслером [20]. Выбор правильного сочетания ингредиентов усложняется тем, что у различных организмов требования к пище неодинаковы. В табл. 5.1 приводится состав среды, использованной для роста организмов класса Pseudomonas на углеводородах. Часто такие среды способствуют также росту организмов других видов. Чтобы установить, будет ли эта среда поддерживать рост организмов определенного вида, следует ввести глюкозу и привить организм. Если будет наблюдаться рост, то среда,, вероятно, может быть пригодна для роста микроорганизмов данного вида при использовании углеводорода или битума в качестве источника углерода вместо глюкозы. [c.179]

    Эволюция живого мира в течение геологического времени приводит к расширению круга таксонов, к увеличению разнообразия форм и замене одних форм другими. Отмечаются и различия в биохимическом составе организмов, стоящих на различных ступенях генетической лестницы, несмотря на единство биохимического плана строения живых организмов. Органические компоненты живых веществ представлены главным образом белками, жирами, углеводами и построены из атомов углерода, водорода, кислорода, азота, серы, фосфора. Клетки живых организмов и растений используют эти элеме+iTbi в качестве источника химической энергии в ходе метаболизма. Распад химических веществ в клетках различных животных осуществляется по единому плану. Однако имеется и ряд различий в биохимическом составе организмов, обусловленных как эволюцией живого вещества в фанерозое, так и различием условий жизни в разных бассейнах в одно и то же геологическое время. [c.188]

    Другим новым источником получения протеина являются микроорганизмы, например дрожжи и бактерии. Они выращиваются в различных средах — целлюлозе, углеводородах или крахмале. Вообще культивирование отдельных организмов возможно только на органических субстратах. Найти микробы с высоким содержанием протеина, способные потреблять углеводороды, не так уж легко, однако ряд технологических процессов, основанных на использовании газойля, парафинового воска и даже метана, уже прошли или проходят стадию разработки. Практически во всех этих процессах микроорганизмы выращиваются в водоуглеводородных эмульсиях, куда добавляют стимулирующие рост элементы (азот, двуокись углерода, различные ионы металлов, сульфаты). Когда вырастет достаточное количество микроэлементов, их отделяют от питательной среды путем фильтрования или центрифугования, промывают и сушат. Для кормления животных могут использоваться и собственно сухие микроорганизмы. [c.274]

    Полисахариды (полимерные углеводы) представляЕот собой соединения, состоящие из многих сотен нли даже тысяч моносаха-ридных звеньев. Их состав отвечает общей формуле (СеНюОз) . Наиболее важными среди полисахаридов являются целлюлоза и крахмал. Оба эти вещества образуются в растениях из диоксида углерода и воды в результате фотосинтеза. Целлюлоза — основной строительный материал растений, крахмал служит запасным пищевым фондом растений и находится в основном в семенах (кукуруза, картофель, рис, пшеница и др.). Углеводы служат источником питания человека. В организме человека и животных они превращаются в жиры и белки. Целлюлоза в виде хлопка и вискозы применяется для изготовления одежды и бумаги. [c.307]

    Трансформация бензола микроорганизмами, относящимися к фуппе микоформ, т.е. микобактериям и сходным с ними организмам, была изучена Г.К. Скрябиным с сотрудниками [149]. Было обнаружено, что в качестве источника углерода бензол не ассимилировался изученными культурами - представителями родов [c.112]

    Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем перимущественное развитие та или иная группа получает в зависимости от условий работы системы. Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергшо получают за счет фотосинтеза, используя энергию света, либо хемосинтеза путем окисления некоторых неорганических соединений (например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и Др.). [c.100]

    Фотосинтез является непременным условием жизни растений и животных, будучи фактически самым крупномасштабным синтетическим процессом на Земле. Как считает П. Нобел, за год фотосинтезирующими организмами фиксируется и переводится в форму органических соединений около 5-10 г (50 млрд. т) углерода, причем большая часть его фиксируется фитопланктоном, живущим вблизи поверхности океанов. Это количество соответствует параллелепипеду, сложенному из фотосинтетиче-ских продуктов, с основанием 1 км и высотой несколько более 100 км. Источником углерода для фотосинтеза служит атмосферный СО2 (содержание в атмосфере составляет 0,03%), а также СО2 и НСОз растворенные в воде озер и океанов. Из продуктов фотосинтеза, кроме органических соединений, очень важное значение имеет кислород, необходимый для всех организмов, обладающих дыханием. Весь кислород, содержащийся в атмосфере, был образован путем фотосинтеза за несколько тысячелетий. [c.161]

    Оксид углерода (СО) — бесцветный газ без запаха и вкуса, образуется при горении веществ, содержащих углерод. Такими источниками на объектах нефтедобычи могут быть агрегаты, автоцистерны, подъемники, которые участвуют в различных технологических операциях на устье скважин. При содержании 13—17% оксид углерода может взорваться. При вдыхании и проникновении в организм поражает кровь, образуя метагемоглобин. Поэтому при поражении СО человек чувствует острую головную боль, тошноту, которая наступает при содержании 0,1%. При объемном содержании более 0,5% можег наступить опасное отравление организма. [c.371]

    Возникновение на Земле ок. 2,8 млрд. лет назад механизма окисления воды с образованием О2 представляет собой важнейшее событие в биол. эволюции, сделавшее свет Солнца главным источником-своб. энергаи биосферы, а воду - практически неограниченным источником водорода для синтеза в-в в живых организмах. В результате образовалась атмосфера совр. состава, О2 стал доступным для окисления пищи (см. Дыхание), а это обусловило возникновение высокоорганизов. гетеротрофных организмов (применяют в качестве источника углерода экзогенные орг. в-ва). [c.175]

    В качестве источников углерода дрожжевые клетки могут использовать и низшие спирты — метанол и этанол, получаемые в биотехнологии из природного газа или растительных отходов. Дрожжевая масса, полученная после культивирования дрожжей на спиртах, содержит больше белков (56 — 62 % от сухой массы) и меньше вредных примесей, чем кормовые дрожжи, выращенные на парафинах нефти, такие, как производные бензола, /)-аминокисло-ты, аномальные липиды, токсины и канцерогенные вещества. Кроме того, кормовые дрожжи имеют повышенное содержание нуклеиновых кислот — 3 — 6% от сухой массы, которые в этой концентрации вредно воздействуют на организм животных. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые могут быть причиной мочекаменной болезни, остеохондроза и других заболеваний. Тем не менее кормовые дрожжи хорошо усваиваются и перевариваются в организме животных, а по содержанию таких аминокислот, как лизин, треонин, валин и лейцин, значительно превышают многие растительные белки. Вместе с тем белки дрожжей частично не сбалансированы по метионину, в них мало цистеина и селенцистеина. Оптимальная норма добавления дрожжевой массы в корм сельскохозяйственных животных обычно составляет не более 5 —10 % от сухого вещества. [c.11]

    В некоторых организмах, особенно в бактериях, которые способны использовать формиат в качестве единственного источника углерода, формиат вначале присоединяется к Н4Р01 с образованием 10-формил-Н4ро1 (нижний левый угол рис. 8-21). [c.281]

    Это ограничение на пути превращения Сг-ацетильных единиц в Сз-метаболиты преодолевается во многих организмах, включая, в частности, Е. соИ, при помощи глиоксилатного пути. Эта последовательность реакций превращает две ацетильные единицы в одну Сз-единицу с декарбоксилированием четвертого атома углерода. Этот путь позволяет многим организмам (включая Е. соИ и Tetrahymena) существовать на ацетате как на единственном или основном источнике углерода. Глиоксилатный путь Имеет особенно важное значение у растений, в семенах которых запасаются большие количества жира (маслянистые семена). Благодаря глиоксилатному пути жир в проростках семян легко может превратиться в сахар, целлюлозу и другие углеводы, необходимые для роста растения. [c.480]

    Среди бактерий в очистных сооружениях сосуществуют гетеро-трофы и автотрофы, которые различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатьша-ют их для получения энергии и биосинтеза клетки. Автотрофиые организмы потребляют для синтеза неорганический углерод, а энергию получают либо за счет фотосинтеза, либо за счет хемосинтеза при окислении ряда неорганических соединений. [c.241]

    Биологическая роль крахмала состоит в том, что он является запасным питательным веществом в растениях и когда возникает потребность в энергии и источнике углерода, крахмал высвобождается из запасных гранул и гидролизуется ферментами - амилазами. Они расщепляют связи 1 ->4 в амилозе и амилопектине в различных участках, что приводит к образованию смеси глюкозы и мальтозы. В результате действия амилаз происходит полное расщепление амилозы, но амилопектин расщепляется лишь частично, и для разрыва связей 1—>6 необходимо действие специальных ферментов -мальтаз, которые разрывают связи в крахмале в точках ветвления амилопектина. Благодаря комбинированному действию амилаз и мальтаз крахмал полностью гидролизуется до a-D-глюкoзы, которая затем активно включается в различные метаболические реакции. В противоположность целлюлозе, крахмал хорошо усваивается в организме животных и человека, так как расщепляющие его ферменты содержатся в слюне и поджелудочной железе. [c.69]


Смотреть страницы где упоминается термин Углерод источники для организма: [c.139]    [c.405]    [c.263]    [c.111]    [c.100]    [c.22]    [c.129]    [c.256]    [c.445]    [c.554]    [c.137]    [c.25]    [c.220]    [c.25]    [c.15]   
Биохимия (2004) -- [ c.210 , c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация организмов в соответствии с источниками энергии и углерода



© 2024 chem21.info Реклама на сайте