Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт натриевые

Рис. 7.9. Функции Са + внутри клетки. Пассивно входящий поток ионов кальция (б) вводится из цитоплазмы посредством активного транспорта через клеточную мембрану (а), через митохондрию (г), через саркоплазм этический ре-тику лум (б), выходящим током (а), сопряженным с входящим натриевым током, фиксируется кальмодулином и другими Са +-связывающими белками (е). Рис. 7.9. Функции Са + <a href="/info/1409039">внутри клетки</a>. Пассивно <a href="/info/1451463">входящий поток</a> <a href="/info/96992">ионов кальция</a> (б) вводится из цитоплазмы посредством <a href="/info/233388">активного транспорта через</a> <a href="/info/1532051">клеточную мембрану</a> (а), <a href="/info/1394030">через митохондрию</a> (г), через <a href="/info/1394139">саркоплазм этический</a> ре-тику лум (б), выходящим током (а), сопряженным с входящим натриевым током, фиксируется кальмодулином и другими Са +-связывающими белками (е).

    Минералокортикоиды, воздействуя на почки, регулируют водно-солевой обмен в организме. Самым активным в этой группе гормонов является альдостерон, обеспечивающий транспорт Na в почечных канальцах. Кроме того, он стимулирует выделение с мочой К" и иона аммония. Механизм действия альдостерона связан с увеличением числа натриевых каналов в мембранах почечных клеток, а также с индукцией синтеза АТФ, необходимого для транспорта ионов. [c.159]

Таблица 7.1. Сравнение пассивного и активного натриевого и калиевого ионного транспорта Таблица 7.1. Сравнение пассивного и <a href="/info/1390010">активного натриевого</a> и <a href="/info/1379654">калиевого ионного</a> транспорта
    Если не касаться грязных стоков и ядовитых сливов, то воды издревле разделяются на соленые и пресные. В соленых водах, по сравнению с пресными, содержится повышенная концентрация солей, прежде всего натриевых. Для питья и промышленного использования они не пригодны, но отлично подходят для купания и водного транспорта. Солевой состав соленых вод в различных водоемах довольно сильно колеблется например, в мелком Финском заливе воды менее соленые, чем в Черном море, а в океанах соленость значительно больше. Хочу напомнить, что соленая вода — необязательно морская. Известны бассейны с исключительно солеными водами, не имеющие сообщения с морем, такие как Мертвое море в Палестине и соленое озеро Баскунчак. [c.21]

    Рассмотрим в связи с этим натриевый насос — находящееся в клеточной мембране (в частности, в мембране нервной клетки) устройство, использующее свободную энергию АТФ для активного транспорта ионов Na и в направлениях их возрастающих концентраций. В основе этого устройства действует фермент , -активируемая АТФ аза. Опишем натриевы насос в тер- [c.346]

    Многие предпочитают говорить не о натриевых каналах, или порах, а о системе переноса ионов натрия, поскольку они избегают обсуждения молекулярных структур и механизма ионного транспорта через мембрану. Действует ли данная система как канал или как переносчик [12] Переносчик может обеспечить скорость потока ионов 10 ионов/с, т. е. на три порядка меньше, чем через поры. Следовательно, натриевая транспортная система функционирует как пора. Далее при биофизическом подходе механизмы переноса различаются по зависимости скорости ионного транспорта от концентрации. При существовании переносчика насыщение достигается при высоких концентрациях, когда все молекулы переносчика несут ионы, в то время как диффузия ионов через канал определяется только броуновским движением ионов и электрохимическим градиентом, т. е. отдельные ионы проходят сквозь мембрану. [c.138]


    Консталины синтетические УТс-1 и УТс-2 (ГОСТ 5703—51). Приготовляют загущением индустриальных масел 20, 20В, 45 и др. натриевыми мылами синтетических жирных кислот. Они применяются для смазывания узлов трения тракторов, городского транспорта, различных индустриальных механизмов, которые работают при повышенных температурах УТс-1 обеспечивает работу до ПО—П5°С, а УТс-2 до 130—135 °С [217, 230]. [c.241]

    Большое количество различных натриевых смазок применяется на железнодорожном транспорте [231]. Их изготовляют по ТУ МПС. [c.241]

    Представляет интерес выяснить, в какой мере продукты окисления влияют на скорость процесса. Во-первых, по виду кинетических кривых невозможно отделить последовательные этапы окисления редоксита, поскольку процесс в целом лимитируется не электрохимическими стадиями, а транспортом, молекулярного кислорода. Во-вторых, вследствие благоприятных условий протекания электрохимических реакций окисления меди и восстановления кислорода при пониженном значении pH не только степень окисления, но и окислительно-восстановительная емкость редоксита водородной формы несколько больще, чем натриевой (см. табл. 8). В результате кинетический параметр Dy имеет близкие значения l,2-10- fH 1,3-10- м с соответственно для Н- и Na-формы. Кинетические параметры редокситов для обеих ионных форм при ионообменной емкости, много меньщей восстановительной, не могут сильно различаться, ввиду того, что.диффузия кислорода в конечном итоге определяется природой матрицы, ее пористостью и накоплением продуктов реакции в фазе редоксита. Последнее суждение вовсе не относится к тем окисли- [c.103]

    Активный транспорт ионов осуществляется из области с меньшей концентрацией ионов в область, где их концентрация выше, за счет энергии гидролиза аденозинтрифосфата (см. гл. 18). Клетка расходует на активный транспорт калия внутрь и транспорт натрия из нее значительную часть своей энергии. Активный транспорт осуществляет так называемый натриевый насос. Это специальный молекулярный механизм, работа которого упрощенно состоит в следующем. На внутренней поверхности клеточной мембраны этот механизм образует комплекс с натрием, затем он переориентируется так, что его фрагмент с комплексом натрия оказывается на внешней поверхности мембраны. Здесь этот комплекс диссоциирует, катионы Ма+ уходят в межклеточный раствор, и образуется комплекс с катионом К+. После этого механизм вновь переориентируется и переносит катион К+ в цитоплазму, где вновь образует комплекс с катионом Ма+. Далее цикл встречного переноса катионов Ма и К+ продолжает повторяться. [c.278]

    Наиболее интенсивно изучается активный перенос ионов N3+ и К+ через плазматическую мембрану [302]. Сущность этого явления состоит в том, что внутриклеточная жидкость имеет высокое содержание ионов К+ и низкое содержание ионов 1Ыа+, во внеклеточной среде, наоборот, выше содержание ионов Ма+. Для поддержания указанных градиентов концентраций моновалентных катионов и, особенно, для их восстановления после деполяризации мембраны обязательно должно происходить удаление из клетки ионов Ыа+ и активное всасывание в клетку ионов К" ". Эта система транспорта, сосредоточенная в плазматической мембране, называется натриевым насосом . Энергия, необходимая для активного транспорта ионов Ыа+ против градиента концентрации, обеспечивается расщеплением АТФ (до АДФ и неорганического фосфата). Подобный распад АТФ катализируется ферментом—(Ка+-1-К )-активированной АТФ-азой. [c.380]

    В основе представления об активном транспорте через мембрану лежит тот факт, что удаление какого-то одного вещества из клетки является движущей силой активного переноса других веществ. Так, активный перенос ионов Ма+ из клетки ( натриевый насос ) приводит к образованию градиента концентрации этих ионов, направленного внутрь клетки, который и обусловливает активный перенос ионов калия, глюкозы и аминокислот внутрь клетки. Если удаление ионов N3+ из клетки не компенсируется поступлением внутрь других ионов, по-видимому, происходит возникновение градиента электрического потенциала ( электро-генный насос ). Предполагают, что этот тип натриевого насоса является первичным механизмом при возникновении трансмембранного потенциала в мышечных клетках (обеспечение действия кальциевого насоса ) (см. стр. 430). Необходимо отметить, что все системы переноса через мембрану работают за счет энергии АТФ или других носителей энергии. [c.431]

    В пром-сти П.с. используют для сварки рельсов, труб, электрич. проводов, а также при произ-ве разл. сплавов (феррохрома и др.) (см. Металлотермия, Термит). Иногда П.с. служат для получения кислорода (хлоратные шашки), водорода и др., создания натриевых и бариевых облаков при исследованиях верх, слоев атмосферы, при киносъемках и для изготовления фей верков. В с. х-ве П.с. используют для окуривания растении, борьбы с вредителями, дезинфекции овощехранилищ, рассеивания града (см. Противоградо-вые составы) и т. п. Сигнальные П. с. находят также применение на разл. видах транспорта. [c.542]


    Щеточная каемка энтероцитов содержит системы переносчиков. Установлено существование переносчика, способного связывать различными своими участками глюкозу и Ка и переносить их через плазматическую мембрану кишечной ютетки. Считают, что глюкоза и Ка высвобождаются затем в цитозоль, позволяя переносчику захватить новую порцию груза . Ка транспортируется по градиенту концентрации, стимулируя переносчик к транспорту глюкозы против указанного градиента. Свободная энергия, необходимая для этого активного транспорта, образуется благодаря гидролизу АТФ связанному с натриевым насосом, который откачивает из клетки Ка в обмен на К. Динамика происходящих при этом процессов пока остается недостаточно ясной и в настоящее время обстоятельно изучается. [c.321]

    Перейдем к молекулярному рассмотрению. Как уже сказано, источником свободной энергии для активного транспорта служит АТФ. АТФ усиливает активный транспорт, будучи введена внутрь клетки, но ие влияет ка него, находясь во внешней среде. Цз клеточных мембран удалось выделить К, Na-активируемую АТФ-азу. Этот фермент расщепляет АТФ только в присутствии ионов К" " и Na" . Действие АТФ в мембране непосредственно связано с активным транспортом — глюкозид оубаин ингибирует АТФ-азу при той же концентрации, при которой он прекращает работу натриевого насоса. Гидролиз АТФ in vitro с помощью этой АТФ-азы происходит в две стадии. Вначале выделяется АДФ, а неорганический фосфат остается связанным с ферментом. Эта стадия активируется ионами Na"". Второй этап требует ионов К"" и состоит в отщеплении фосфата от фермента. Сходная, но уже пространственная асимметрия свойственна насосу — на внутренней поверхности мембраны его активность зависит от Na, на внешней — от При расщеплении АТФ на мембранах наблюдается переход меченого фосфата из АТФ в фосфопротеи-ды мембраны. Кинетика действия АТФ-азы in vitro характеризуется S-образной зависимостью скорости реакции от концентраций Na"", К+ и АТФ. Гидролиз одной молекулы АТФ в мембране сопровождается выходом из клетки двух-трех ионов Na"". [c.348]

    Рис. 6. . а — схема нервного волокна с синапсом. Показаны системы транспорта (АТРаза) и три различные системы пассивного транспорта. Справа — хемовозбудимая транспортная система, регулируемая молекулой непроме-диатора, например канал в постсинаптической мембране мышечной концевой пластинки, пропускающий ионы калия и натрия слева — отдельно К а+- и К+-каналы в мембране аксона, управляемые электрическим полем и открываемые при деполяризации бив — проводимость натрия gNг (б) и калня ё к, (в), а также входящий натриевый /ка и выходящий калиевый /к токи после деполяризации (60 мВ). Четко дифференцированная кинетика двух процессов N3 и к подразумевает существование индивидуальных молекулярных структур для пассивного натриевого и калиевого транспорта. [c.131]

    Вновь обсудим электровозбудимые каналы, которые обеспечивают пассивный транспорт ионов Ыа+ и К+. Тщательный анализ возникновения потенциала действия гигантского аксона кальмара, проведенный Ходжкин и Хаксли [1—3], показал, что существуют по крайней мере два различных (отдельных) капала после деполяризации мембраны открывается натриевый канал, обусловливающий входящий поток ионов Ыа+ через некоторое время открывается калиевый канал и поток ионов К+ устремляется в противоположном направлении (рис. 6.1). Известно, что проницаемость мембраны для ионов Ыа+ и К+ не увеличивается одновременно. Кроме того, имеются еще два факта, которые доказывают существование двух отдельных каналов. [c.132]

    Как известно, существуют селективные ингибиторы для различных ионных токов. Тетродотоксии и ряд других токсинов специфически блокируют натриевый канал, не оказывая влияния на калиевый. Напротив, ион тетраэтиламмония (ТЭА) ингибирует поток ионов калия, не влияя на транспорт ионов натрия. [c.133]

    Хотя электрофизиологические измерения вроде бы подтверждают принцип независимости, тем не менее очевидны несоответствия для систем транспорта натрия и калия. То, что ионные каналы возбудимой мембраны надо рассматривать не как простые отверстия, может быть доказано тем, что насыщение при высокой концентрации ионов аналогично насыщению фермента субстратом, а также взаимной конкуренцией между ионами Na+ и непроникающими ионами, которые блокируют канал. Модель Хилле свидетельствует о том же, демонстрируя возможность натриевого канала связывать одновременно только один ион Na+ с константой диссоциации Ко 368 мМ. В классической модели лиганд соединяется с молекулой переносчика и переносится с внешней поверхности мембраны на внутреннюю, где ион высвобождается. В данном случае этот механизм не наблюдается. Следовательно, натриевая транспортная система должна рассматриваться как канал с катионсвязывающим центром (и воротной системой) в отличие от переносчика канал пронизывает мембрану и является неподвижным. [c.140]

    Еще одна трудность выделения натриевых каналов связана с их сравнительной нестабильностью вне мембраны. Пока известны лишь следующие биохимические характеристики канала ТТХ-связывающий компонент мембраны аксона с 230 ООО (по данным метода инактивации радиацией) или 260 000 (определено биохимическими методами), коэффициент седимента-. ции 9,2 этот компонент инактивируется протеазами, при нагревании и при обработке ионными детергентами (додецилсуль-фатом натрия). Часть натриевого канала, ответственная за связывание ТТХ или STX, построена, по крайней мере частично, из белка СИ]- Молекулярная масса натриевого канала синаптосом мозга равна в целом 320 ООО, что обусловлено присутствием двух небольших полипептидных цепей (37 ООО и 39 ООО) и одной большой (260 000). Однако нельзя исключить, что другие молекулы, липиды или углеводы частично или полностью не участвуют в транспорте ионов Na+. [c.142]

    Нейротоксины как инструменты исследования. Во время потенциала действия выделяют три фармакологически различных процесса активацию (открытие) канала, ионный транспорт через открытую пору и инактивацию (закрытие) канала. Нейротоксины, влияющие на потенциалзависимые натриевые каналы, по-видимому, действуют через три различных участка канала [14] участок 1 (ТТХ, STX), относящийся к транспорту ионов участок 2 (ВТХ, вератридин, актонитин), регулирующий активацию канала, и участок 3 (S TX, АТХ), регулирующий инактивацию канала (табл. 6.4). [c.150]

    Натриевые и калиевые каналы составляют только незначительную часть аксональной мембраны. Лаздунский [31] рассчитал, что в нерве ракообразных лишь одна тысячная часть полипептидных цепей принадлежит компонентам каналов. В гл. 7 подробно рассматривается система активного транспорта, здесь [c.159]

    В гл. 6 рассматривались натриевые и калиевые каналы, регулирующие пассивный ток ионов во время потенциала действия (рис. 7.1). Однако еще одна функция аксональной мембраны связана с проведением нервных импульсов — активный транспорт ионов. Если бы вход ионов натрия в клетку сопровождался только выходом ионов калия, градиент концентрации между обеими сторонами клетки вскоре исчез. Пассивное проникновение ионов Na+ через мембрану в состоянии покоя приводит к тому же эффекту, поэтому входящие ионы натрия должны вновь выводиться наружу, а диффундирующие снаружи ионы К+ должны направляться внутрь аксона. Естественно, что для этого должна расходоваться энергия, поскольку указанный процесс осуществляется против градиента концентрации. Именно этой цели и служат ионные насосы, содержащиеся в мембране аксона благодаря метаболической энергии, накопленной в АТР, они осуществляют активный транспорт ионов для поддержания мембранного потенциала. Направление движения иона и направления градиентов схематически изображены на рис. 7.2. Ходжкин и Кейнес [1] исследовали активный транспорт ионов Na+ через мембрану нерва. Они показали, что поток радиоактивных ионов Na+ из клетки ингибируется 2,4-динитрофенолом (рис. 7.3, а), который блокирует синтез АТР. В ходе дальнейших экспериментов Ходжкин и Кейнес установили, что транспорт Na+ обеспечивается при участии ферментов (рис. 7.3,6). Охлаждение клетки до 9,8 °С (или до 0,5 °С) явно замедляло выход ионов натрия, хотя известно, что пассивная диффузия Na+ не столь сильно зависит от температуры. [c.167]

Рис. 7,3. Активный транспорт ионов натрия, а — транспорт радиоактивных ионов блокирован 2,4-дииитрофенолом, ингибитором синтеза АТР б — охлаждение до 0,5 °С или 9,8 °С замедляет выходящий натриевый поток, это свидетельствует о том, что натриевый транспорт осуществляется ферментом и не является диффузионным процессом. (Воспроизводится с разрешения авторов и Journal of Physiology.) [1]. Рис. 7,3. <a href="/info/1890172">Активный транспорт ионов натрия</a>, а — транспорт <a href="/info/973939">радиоактивных ионов</a> блокирован 2,4-<a href="/info/817121">дииитрофенолом</a>, <a href="/info/32942">ингибитором синтеза</a> АТР б — охлаждение до 0,5 °С или 9,8 °С замедляет выходящий натриевый поток, это свидетельствует о том, что натриевый транспорт осуществляется ферментом и не является <a href="/info/79389">диффузионным процессом</a>. (Воспроизводится с разрешения авторов и Journal of Physiology.) [1].
    Имеются примеры ионных регуляторных комплексов, в которых рецептор и ионный канал, по-видимому, находятся в разных молекулах. Так, некоторые ацетилхолиновые рецепторы, найденные в нейронах Aplysia, после связывания с ацетилхолином увеличивают натриевую проводимость. Другие ацетилхолиновые рецепторы того же организма вызывают быстрое возрастание проводимости ионов хлора, тогда как третьи — медленное возрастание калиевой проницаемости [6]. Если принять, что связывающий компонент этих рецепторов один и тот же, что никак не доказано, то он должен действовать в комбинации то с калиевыми, то с натриевыми, то с хлорными каналами [7]. Хотя такие комбинации и казались постоянными, следующие наблюдения привели к выдвижению гипотезы плавающего , или мобильного , рецептора. Согласно этой гипотезе рецепторы не связываются в постоянные комплексы, а плавают в мембране и взаимодействуют с различными активными структурами транспортными системами, ферментами и т. д. (рис. 9.6). Имеется, например, только один тип рецептора для инсулина, который, однако, раздельно регулирует целый ряд мембранных функций транспорт глюкозы, аденилатциклазную, фосфодиэсте-разную, Ка+,К+-АТРазную, Са +-ЛТРазную активности, а также транспорт аминокислот. Напротив, в жировых клетках крыс имеются, по крайней мере, восемь различных рецепторов, и все они регулируют аденилатциклазную активность. Связывание [c.255]

    Многочисленные исследования процессов транспорта, проведенные в 50-х го йх главным образом на аксонах головоногих моллюсков и теиях эритрюцитов, выявили следующие основные характеристики натриевого насоса . Активный выброс ионов натрия зависит от внеклеточной концентрации ионов калия, и, наоборют, внутриклеточное содержание Na" управляет потоком К в клетку, т, е. потоки Na из клетки и в клетку взаимосвязаны. Активный транспорт энергозависим и возможен лишь при наличии в клетке АТР, т, е. иоииые потоки сопряжены с гидрюлизом АТР. [c.622]

    Смазка рельсовая ЖР, ТУ 32 ЦТ 553—73, — натриево-кальциевая, на смеси масла осевого 3 и велосита. В смазку введены сера и озокерит. Применяют на железнодорожном транспорте для уменьшения бокового износа рельсов и гребней бандажей колесных пар подвижного состава при скольжении на кривом участ5 е пути. Выпускается двух марок ЖР Ед — единая для летнего периода и зимой до температуры наружного воздуха — 30 °С и ЖР 3 для зимнего периода при температуре наружного воздуха до —35 °С. Верхний температурный предел применения 65 °С. По эксплуатационным свойствам соответствует смазке графитной УСсА  [c.303]

    Смазка 1-13 жировая, ГОСТ 1631—61, и смазка железнодорожная 1-ЛЗ, ГОСТ 12811—67,— натриево-кальциевые на маслах средней вязкости или смеси соответствующих масел. Применяют при температурах от —25 до 90 °С в узлах трения электромашин средней мощности, ходовой части автомобилей, тракторов, экскаваторов. См,азка 1-ЛЗ содержит 0.5% дифениламина ее используют в основном в роликоподшипниках букс вагонов и локомотивов. Смазки обладают низкой водостойкостью, гигроскопичны, взаимозаменяемы. В настоящее время на железнодорожном транспорте смазку 1-ЛЗ заменили смазкой ЛЗ-ЦНИИ, а в электромашинах смазку 1-13 заменили смазкой ВНИИ НП-242. [c.307]

    Смазка железнодорожная ЛЗ-ЦНИИ, ГОСТ 19791—74,— натриево-кальциевая на масле веретенном АУ. Содержит антиокислительные и противозадирные присадки. Ее применение в тяжелонагруженных роликовых подшипниках позволило избежать задиров торцов роликов. Смазка без смены обеспечила на железнодорожном транспорте пробег подвижного состава 400 тыс. км, уменьшение тяговых усилий, повышение до 150—160 км/ч скоростей движения поездов. Температурный диапазон применения смазки от—40до 100°С. [c.308]

    Гладкая мышца кишечника легко проницаема для ионов натрия. Гудфорд и Германсен [54], используя Na , нашли, что большая часть внутриклеточного натрия обменивается в течение 1 мин. Выталкивание Na+ натриевым насосом происходит с большей скоростью, чем всасывание К , что и является причиной поляризации. Было принято, что энергия, обусловленная выталкиванием ионов натрия, необходима для сохранения стабильности мембранных потенциалов и что запасы энергии для этих процессов ограничены. Адреналин, активируя фосфорилазу, усиливает метаболизм, вызывая тем самым образование энергии, необходимой для транспорта ионов, стабилизации мембран и расслабления ткани. [c.365]

    С 1970 г. в СССР начато производство комплексных кальциевых, бариевых и других смазок. Для автомобильного транспорта особенно перспективной явилась разработка высококачественных многоцелевых пластичных смазок на оксистеарате лития типа Литол-24. В настоящее время Ли-тол-24 получил наиболее широкое распространение для смазки узлов легковых автомобилей. Для этого вида техники используются и некоторые другие литиевые смазки, ЛСЦ-15, Фиол-1, Фиол-2, Фиол-2у, ШРУС-4. Среди новых смазок есть бариевая смазка (ШРБ-4), натриевая (КСБ). Выпускаются также немыльные смазки углеводородная, ВТВ-1, силикаге-левые Лимол и Силикол. [c.63]

    Консталины готовят на естественных жирах, они отличаются значительным количеством загустителя. До недавнего времени их изготовляли и на синтетических жирных кислотах — консталины УТс-1 и УТс-2. Консталины жировые (УТ-1, УТ-2) получают загущением минеральных масел, очищенных или выщелоченных, натриевыми мылами природных жиров. При низких температурах (ниже —20 °С) консталины применять не рекомендуется. В отечественном ассортименте насчитывается более десяти наименований натриевых смазок, из них по ГОСТ делают шесть. Кроме того, производятся смазки самолетомоторная тугоплавкая СТ (НК-50), лейнерная (ВЛ), индустриальная металлургическая 137 и ряд смазок для железнодорожного транспорта. Разработаны смазки, полученные загущением нефтяных и синтетических масел комплексными натриевыми мылами, — ВНИИ НП-223, ВНИИ НП-228, ВНИИ НП-260. [c.145]

    Необходимо отметить, что натриевые насосы как системы активного транспорта характерны для структурных мембран клетки, первыми при-нимаюшими на себя воздействие внешней среды и не требующими для функционирования высокого электрического сопротивления. Иначе обстоит дело с сопрягающими мембранами, выполняющими главную функцию —аккумулирование энергии —и требующими высокого электрического сопротивления [15, 33]. В этом случае действуют протонные насосы, которые служат главными узлами механизма сопряжения процессов окисления и фосфорилирования при генерации мембранного потенциала дыхательной цепью и АТФ-азой. При этом одна система разделяет водород на Н+ и /, а вторая — молекулу НгО, гидролизующей АТФ, на Н+ и НО-. [c.432]


Смотреть страницы где упоминается термин Транспорт натриевые: [c.474]    [c.76]    [c.93]    [c.474]    [c.132]    [c.139]    [c.141]    [c.143]    [c.164]    [c.178]    [c.622]    [c.632]    [c.158]    [c.274]    [c.33]    [c.190]   
Биоорганическая химия (1987) -- [ c.22 , c.632 , c.634 ]




ПОИСК







© 2024 chem21.info Реклама на сайте