Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связей при хлорировании

    Хлорирование олефинов осуществляется присоединением хлора по месту двойной связи (получение дихлорэтана, реакции гидрохлорирования) и методом замещения, при котором в молекуле полученного хлорпроизводного сохраняется двойная связь (хлорирование пропилена, изобутилена). При хлорировании этилена, кроме дихлорэтана [c.499]

    Опытные данные о реакциях пятифтористого брома отсутствуют, В некоторых патентах заявлены попытки его применения без достаточных подтверждений. Мерей утверждает, не приводя при этом никаких экспериментальных подробностей, что пятифтористый бром как фторирующий агент мало отличается от трехфтористого брома. В обоих случаях при присоединении к двойной связи хлорированных олефинов фтор присоединяется п большей, а бром — в меньшей степени. [c.61]


    В качестве присадок, содержащих серу и хлор, исследованы вещества, полученные реакциями галогенированных углеводородов с органическими сульфидами и ксантогенатами, взаимодействием хлоридов серы и соединений с двойными связями, хлорированием сернистых органических соединений, а также осернением хлорсодержащих органических веществ . [c.111]

    До сих пор процесс гидрохлорирования олефинов представлял большой интерес только в связи с получением хлористого этила. Этот продукт, получаемый хлорированием этана, применяется в больших количествах как ком- [c.198]

    Этот процесс, позволяющий использовать для хлорирования парафиновых углеводородов хлористый водород, что имеет весьма важное значение в связи с повсеместным дефицитом хлора, в последнее время был детально изучен. [c.154]

    Последующее хлорирование проводят в жидкой фазе, при обычной температуре в заполненно м кольцами Рашига чугунном реакторе 26 под давлением 3 ат. Для реакции подается лишь такое количество хлор-газа, чтобы не было заметного избытка его. При таком режиме достигается количественное насыщение двойных связей. Продукты дополнительного хлорирования возвращаются в колонну III, откуда высококипящие компоненты вместе с дихлоридами поступают в приемник 22. [c.175]

    В результате реакции двойного обмена с соединениями, содержащими серу, например тиомочевиной, роданидами, сульфидами или полисульфидами щелочных металлов, галоидные алкилы превращаются в продукты с С—S — связью, которые после хлорирования и окисления переходят в сульфохлориды. [c.381]

    Относительные скорости замещения различных типов водородных атомов, найденные главным образом на примерах хлорирования пропана, н-бутанов и изобутана, позволяют рассчитать содержание в смеси каждого из изомеров. При хлорировании н-пентана получаются три, прп хлорировании изопентана — четыре изомера. Изопентан (2-метилбутан) имеет всего 12 атомов водорода, из которых 9 связано с первичным углеродом, 2 со вторичным и 1 с третичным. [c.548]

    Ж. Причины малоудовлетворительных выходов различных функциональных производных из продуктов хлорирования. Связь этого явления [c.622]

    Хлорирование при низких температурах (до 250 °С) ведет преимущественно к присоединению хлора по двойной связи, как это обычно имеет место в случае олефинов с прямыми цепями  [c.176]

    Метод горячего хлорирования. Как уже было сказано, при хлорировании олефинов с прямой цепью при температурах до 250 °С в результата присоединения хлора к двойной связи образуются преимущественно дихлориды. [c.177]


    В связи с тем, что себестоимость бутиленов выше себестоимости пентанов, а эксплуатационные издержки в процессах карбонилирования и гидрирования превышают издержки в процессах хлорирования пентанов и гидролиза амилхлоридов, получение амиловых спиртов оксосинтезом оказывается менее эффективным, чем хлорирование пентанов. Однако при необходимости получения альдегидов С5, служащих сырьем для ряда химических синтезов, а также только первичных спиртов С5 карбонилирование бутиленов в комбинации с гидрированием валериановых альдегидов может [c.90]

    Когда давление при хлорировании изменяется от атмосферного до 0,6 МПа, активность катализатора в реакции изомеризации снижается, что связано с повышенной концентрацией четыреххлористого углерода на поверхности катализатора. Хлорирование при давлении 0,2 МПа не приводило к изменению активности катализатора. [c.70]

    Несколько отличный механизм отравляющего действия сероводорода можно предположить на хлорированных алюмоплатиновых катализаторах низкотемпературной изомеризации. Известно, что хлорированный 17-оксид алюминия способен изомеризовать парафиновые углеводороды с высокой начальной активностью даже при отсутствии платины [91, 101]. Диссоциативная адсорбция сероводорода донорно-акцепторными центрами хлорированного оксида алюминия должна снижать кислотность поверхности катализатора. Подобный характер взаимодействия Н2 5 с поверхностью прокаленного оксида алюминия отмечался в литературе [102]. Непрочность подобной связи обуславливает возможность восстановления активности катализаторов низкотемпературной изомери- [c.88]

    Хлор, в зависимости от условий хлорирования олефина, может занимать различное положение в полимерной цени. Двойная связь хлорированного полиолефина сохраняется и в продукте взаимодействия с полиамином. Алкенилированные полиамины, полученные хлорированием полибутиленов (с молекулярной массой 800-1300) в растворителе при температуре 20°С и последующей конденсацией с диэти-лентриамином или тетраэтилвнпентамином, обладали высокими нейтрализующими свойствами (щелочные числа 100-140 мг КОН/г). [c.39]

    При температуре выше 200 °С происходит расщепление продукта по эфирной связи. Хлорированием анизола, имеющего другие заместители в кольце (кроме хлора), получают еще более сложную смесь продуктов. Так, если заместитель — метнльная группа, то продукты хлорирования содержат хлор в. метильной группе и кольце. Хлорирование 4-нитроанизола дает только 207о хлорметил-я-нитрофенилового эфира, а из метилового эфира гидрохинона в присутствии РСЦ образуется главным образом метиловый эфир 2,5-дихлоргидрохи-нона. Прн большой глубине процесса идет хлорирование бо-ково11 цепи  [c.12]

    Относительно образования промегкуточных продуктов реакции никаких указаний нет. Авторы предполагают, что хлористый алюминий придает хлорированному парафину активность таким образом, что его молекула присоединяется к двойной связи хлорированного олефина, который также активирован хлористым алюминием. [c.773]

    Растворители пятого класса, такие ках гексан, четыреххлористый углерод и др., не способны к образованию водородных связей. Хлорированию растворенный в них фенол подвергается в неассоциированной форме, что приводит, согласно-известному механизму, к преи.мущественному образованию -орто-изо.меров. [c.13]

    Не меньшее значение имеют реакции хлорирования олефинов замещением. С олефиповымп углеводородами изостроения, у которых углерод с двойной связью находится в боковой цепи, реакция хлорирования путем замещения идет уже при комнатной и даже при значительно более низкой температуре. Хлорирование неразветвленных углеводородов, в частности пропена, для которого эта реакция играет большую роль, идет только при очень высоких температурах (горячее хлорироваппе при 500 ). [c.168]

    При замещении водорода метиленовых групп ни для какого положения в молекуле не обнаруживается торможения или ускорения реакции замещения. При хлорировании н-додекана и н-гексадекана образуется соответственно около 8,5 и 6,2% мол. хлоридов, замещенных при конце-гзом атоме, т. е. первичных хлоридов. Остальные 91,5% мол. при хлорировании н-додекана и 93,8% мол. для н-гексадекана распределяются равномерно между всеми метиленовыми группами. В этом случае необходимо рассматривать лишь половину длины цепи углеводорода следовательно, при хлорировании н-додекана при углеродных атомах в положениях 2, 3, 4, 5 и 6 связано по 18,3% мол. хлора. В продукте хлорирования н-гексадекана при углеродных атомах 2, 3, 4, 5, 6, 7 и 8 связано по 13,4% мол. хлора. Из приведенных количественных соотношений можно вычислить соотношение скоростей замещения первичного и вторичного водородов, которое приблизительно равно 1 3,20. Следовательно, и в данном случае соотношение выходов изомеров изменяется [c.199]


    В дальнейшем необходимо установить, почему из парафиновых углеводородов, особенно из высших, нельзя получить спирты и другие функциональные производные при помощи промежуточного хлорирования— метода весьма привлекательного. Объяснение этого факта, предполагающее исчерпывающее зиание закономерностей процессов замещения парафиновых углеводородов, связано с тем общим выводом, что не только хлорирование, но и все другие реакции замещения парафинов протекают по определенным одинаковым закономерностям. [c.532]

    Описанные выше методика дегидрохлорироваиия без изомеризации двойной связи, способ расщепления, а также энание закономерностей дегидрогалоидирования галоидных алкилов позволили установить состав продуктов хлорирования высших н-парафинов, например н-доде-кана или н-гексадекана. [c.552]

    При сульфохлорировании высших парафиновых углеводородов, таких, как н-додекана или н-гексадекана, проявляются те же закономерности, что и при хлорировании и нитровании этих углеводородов. В соответствии с этим сульфохлоридные заместители распределяются равномерно по всем метиленовым группам замещение в метильной группе происходит в меньшей степени, чем в каждой из метиленовых групп. Принимается, что отношение скоростей замещения первичного и вторичного атомов водорода при сульфохлорировании высших парафинов также равно 1 3,25, как это было подтверждено для низших углеводородов (при помощи экспериментальной методики, выбранной для изучения состава продуктов сульфохлорирования высших парафинов, это отношение нельзя точно определить). Следовательно, в случае н-додекана получается, что с каждым атомом углерода в положениях 2, 3, 4, 5 и 6 связано по 18,3% мол. ЗОаС , в то время как первичного додекансульфохлорида имеется всего 8,57о мол. Однако при таком молекулярном весе это отношение нельзя точно определить по приведенной ранее экспериментальной методике. Здесь также следует учитывать лишь поочовину молекулы, так как замещения в положегшя [c.577]

    Все эти расчеты и выводы являются точными лишь в том случае, если в процессе реакции не происходит дегидрохлорированля с образованием олефинов. Образование дихлоридов путем последующего присоединения хлора по двойной связи протекает по другим закономерностям, чем при прогрессирующем хлорировании монохлорпроизводных поэтому, в смеси дихлориды содержатся в значительно большем количестве, чем в отсутствие реакции дегидрохлорироваиия. Это особенно легко проходит при термическом хлорировании, при переработке высших парафиновых углеводородов или при рециркуляции непрореаги-ровавшего углеводорода, содержащего заметные количества олефинов.  [c.595]

    К совершенно иным продуктам приводит хлорирование олефинов с разветвленной цепью, например изобутилена, который содержит третичный углеродный атом. Здесь замещающее хлорирование происходит с сохранениел двойной связи уже при —40 °С без заметного присоединения  [c.177]

    Замещающее хлорирование неразветвленных олефинов с сохранением двойной связи впервые удалось осуществить Стюарту и Вей-денбауму [3] на пентене-2. Однако выход был очень низким. [c.177]

    Вулканизация хлорированных этилен-пропипеновых сополимеров. Этилен-пропиленовые сополимеры легко можно хлорировать [105]. Сополимер с 40% хлора мягок, а с 30% еще гибок. Вулканизовать такие продукты можно серой и тетраметилтиурамдисульфидом в присутствии ZnO после добавки меркаптобензтиазола [106] достигается полная вулканизация и дополнительное улучшение свойств. В результате бромирования этилен-пропиленового каучука тоже полу-, чается отлично вулканизуемый продукт [107]. Для вулканизации галогенированных сополимеров предлагаются также ZnO, полити-олы -f ZnO, дитиокарбаматы, тритиокарбонаты и т. д. [108]. Недостатком вулканизованных хлорированных продуктов является их пониженная стойкость к озону, связанная с образованием двойных связей во время хлорирования в результате дегидрохлорирования, [c.315]

    На фотохимических процессах основана фотография — воздействие света на светочувствительные материалы. Широко применяются в промышленности цепные реакции фотохлорирования и фотосульфо-хлорирования, имеются промышленные способы фотохимического модифицирования полимерных пленок и волокон. Фотохимия непосредственно связана с одной из важнейших научно-технических проблем — использованием солнечной энергии. Создание искусственных систем, осуществляющих процессы, аналогичные фотосинтезу в растениях, имело бы значение, которое трудно переоценить. [c.202]

    Применяемое сырье, получаемые полупродукты и побочные продукты, поскольку в их составе отсутствуют молекулы с тройными связями, являются менее взрывоопасными и более стабильными углеводородами по сравнению с углеводородами ацетиленового ряда. Бутадиен, в отличие от ацетилена и его производных, имеет повышенную устойчивость к разложению и пе обладает в чистом виде в условиях производства взрывчатыми свойствами и способностью детонировать. Получаемые при хлорировании дихлорбуте-ны, побочные продукты хлорирования, перхлорирования и термического деструктивного дегидрохлорирования (углерод в виде сажи) малогорючи или совсем негорючи, термически более стойки и менее летучи по сравнению с исходным бутадиеном. [c.66]

    Реакции замещения атомов водорода хлором являются экзотермическими. С большим тепловым эффектом протекают реакции присоединения хлора по ненасыщенным связям при умеренной температуре (примерно 400 °С). Высокая экзотермичнбсть реакций хлорирования предопределяет выбор технологической схемы, аппаратурное оформление и меры безопасности. Отступления от [c.112]

    Основными опасностями процесса хлорирования являются высокая экзотермичность реакций и активность хлора при взаимодействии с ацетиленом и другими непредельными углеводородами. Известны многочисленные аварии, вызванные случайным смешением ацетилена с хлором. При этом активное присоединение хлора по ненасыщенным связям и сильный разогрев среды инциировали-взрывной распад ацетилена. В ряде случаев аварии сопровождались разрушением технологического оборудования и хранилищ хлора. [c.349]

    Обычно хлорирование не изменяет углов между связями в молекуле, дифракция, например, показывает,, что даже в полихлорсоединеииях сохраняются тетраэдрические углы. Простые алкилхлориды имеют ди-нольные моменты порядка 1,8—2,1D. Б симметричных соединениях, как четыреххлористый углерод, гексахлорэтан и октахлорпропан дипольный момент равен нулю. 1,2-дихлорэтан теоретически может существовать в нс-форме с большим дипольным моментом и в транс-фо-рме с дипольным моментом, равным нулю. [c.66]

    Хлорированные парафины являются неассоциированными, хотя хлор может действовать как рецептор для водородной связи в некоторых соединениях, нанример в о-хлорфеполах.  [c.66]

    Так как хлор, очевидно, вступает в реакцию замещения пр1жде, чем он присоединяется к углеводороду природного каучука, то невозможно прямым хлорированием приготовить дихлорпд каучука, в котором бы оба атома хлора были присоединены к двойной связи одной группы gHg. Однако эта реакция была осуществлена нри помощи каталитического присоединения хлора к каучуку, используя в качестве источника хлора хлористый сульфурил. Полного присоединения не удалось достичь, содержание хлора составляло только 47,0 % вместо теоретически вычисленного 51 %. Обычно в продукте присутствовало весьма небольшое количество серы. Реакция катализируется присутствием гидроперекисей (более 3%) в отсутствии перекисей ультрафиолетовый свет способствует успешному течению реакции присоединения. Содержание в продукте хлора, реагирующего с анилином, невелико [371. [c.221]

    Продукты конденсации дихлордибромметана с пропиленом или изобутиленом могут конденсироваться в дальнейшем с олефинами, при этом реакция включает и присоединение по двойной связи атома брома, находящегося у хлорированного атома углерода [7]. Так, например, реакция 1,1-дихлор-1,3-дибромбутана с пропиленом дает 2,6-дибром-4,4-дихлоргептан  [c.235]

    Что образование хлористого аллила при хлорировании пропилена при высоких температурах не связано с первоначальным присоединением хлора по двойной связи, с последующим дегидрохлорированием, показывает тот факт, что при высокотемпературном методе образуется фракция монохлорида, содержащая 96% хлористого аллила, в то время как при пиролизе дихлорпропана образуется смесь, содержащая около 60% хлористого аллила и 40% 1-хлорпропена-1 [31, 34а]. [c.365]

    С ТОЧКИ зрения представлений о природе с-комплекса трудно понять, почему (Т-комплекс дпя п-производного трет-бутилбензола долн<он быть менее устойчивым, чем соответствующее производное толуола при хлорировании, но более устойчивым при нитровании. Это противоречие приводит к мысли, что прямая связь скорости замещения со стойкостью <г-ком-плексоп является излишним упрощением. Робертсон, де-ля-Мэр и Свед-ланд I272J считают, что индуктивный эффект заместителя играет порвостоненную роль при нитровании, в то время как гиперконъюгация является доминирующим фактором при бромировании. Аналогичное заключение сделали авторы и относительно частично образующейся новой связи в переходном состоянии, рассматривая ее с точки зрения относительной ковалентной природы [233].  [c.418]

    Температура и давление при хлорировании. Изомеризу-юшая активность хлорированного платинированного т -оксида алюминия в зависимости от температуры обработки четыреххлористым углеродом проходит через максимум, соответствующий температуре хлорирования 275-300 С. Это явление связано с неполнотой разложения четыреххлористого углерода при температурах ниже 250 °С и образованием хлорида алюминия прп высоких температурах хлорирования (рис. 2.14). [c.70]

    Способность хлорированного т юксида алюминия ионизировать молекулу парафинового углеводорода связана с комплексным действием апро-тонных и протонных кислотных центров. [c.73]

    Говоря о влиянии состава пентан-гексановой фракции на глyби.iy изомеризации пентана и гексана на хлорированных алюмоплатиновых катализаторах, необходимо отметить роль соотношения пентанов и гексанов в сырье.. Изомеризация н-гексана протекает более глубоко в присутствии значительных количеств пентана, тогда как изомеризация н-пентана подавляется гексанами (рис. 3.18). Это связано не только с незначительными различиями оптимальных условий изомеризации н-пентана и н-гексана [19, с. 82-100 87]. Влияние соотношения С5 и Сб в сырье (рис. 3.18) объясняется присутствием на поверхности [c.94]


Смотреть страницы где упоминается термин Связей при хлорировании: [c.414]    [c.542]    [c.168]    [c.169]    [c.151]    [c.225]    [c.196]    [c.377]    [c.61]    [c.70]   
Свободные радикалы (1970) -- [ c.180 ]




ПОИСК







© 2025 chem21.info Реклама на сайте