Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры — производные с различными функциональными группами

    Известны два основных метода получения краун-полимеров 1) винильная полимеризация, т.е. получение винильных производных краун-соединений методом радикальной или ионной полимеризации, и 2) использование реакций краун-соединений с функциональными группами, в частности реакций присоединения, поликонденсации, полиприсоединения краун-соединений с двумя или более функциональными группами. В разд. 2.7 описаны методы синтеза краун-соединений, содержащих различные функциональные группы, в частности ви-нильную, аминную, гидроксильную и карбоксильную группы, а также их предшественников - галогензамещенных краун-соединений, соединений с нитро-и нитрильными группами. [c.313]


    Полимеры — производные винила с различными функциональными группами [c.238]

    Из большого числа методов синтеза производных целлюлозы, содержащих различные функциональные группы, в производственных условиях наиболее приемлемы методы этерификации, алкилирования и синтеза привитых полимеров. При получении некоторых типов производных целлюлозы используют и другие методы. [c.83]

    Пористые полимеры являются сорбентами с регулируемой химией поверхности. Введение в полимеризационную смесь мономеров с различными функциональными группами позволяет изменять химическую природу поверхности сорбентов и получать сорбенты, специфически сорбирующие полярные молекулы. Так, уже известны пористые полимерные сорбенты, содержащие эфирные (поли-сорбат-2, хромосорб 107), нитрильные (хромосорб 104), фосфинат-ные функциональные группы, сорбенты на основе винильных производных пиридина [32—36]. [c.5]

    В настоящее время матрицы для ПЭ пол>"чают путем полимеризации различных мономеров или полимераналогичных превращений готовых полимеров (например, введением функциональных групп). В исследовании мы использовали второй способ. В качестве базового полимера мы использовали сополимер трифторхлорэтилена и винилиденфторида (СКФ-32), а прививаемых реагентов - различные производные ароматических сульфокислот. [c.110]

    Синтез ФАП из указанных выще мономеров обычно заключается в радикальной полимеризации. Остаток ФАВ, который содержит различные функциональные группы, не должен участвовать в процессе полимеризации (быть ингибитором процесса, агентом переноса цепи, ловушкой для радикалов и т. д.). Особенно нежелательна даже минимальная химическая модификация остатка ФАВ в ходе полимеризации, которая может привести к изменению ожидаемой физиологической активности полимера. Гомополимеры многих ненасыщенных производных ФАВ плохо растворимы в воде, а остатки ФАВ в них пространственно затруднены в результате контакта друг с другом и с полимерной цепью. Наиболее удачным вариантом является, по-видимому, чередующаяся сополимеризация или сополимеризация с преобладанием диад и триад солюбилизирующего мономера. В этих случаях содержание действующего начала в ФАП достаточно велико, а пространственное экранирование остатков ФАВ незначительно. Желательно, чтобы реакционная способность мономера, содержащего ФАВ, не сильно отличалась бы от таковой для солюбилизирующего мономера. Большие различия в константах сополимеризации приводят к повышению композиционной неоднородности сополимера, которую можно уменьшить обычно применяемыми для этого приемами. Концевые группы в большинстве случаев не играют существенной роли при получении ФАП. Общая схема синтеза ФАП (со)полимеризацией приведена на рис. 3.1. [c.65]


    В подавляющем большинстве случаев в ранних работах для синтеза карборансодержащих полимеров использовались алифатические производные карборана, содержащие необходимые функциональные группы. Например, для синтеза различных карборансодержащих полиэфиров были использованы 1,2- и 1,7-бис-(гидроксиметил)карбораны, а также 1,2- и 1,7-бис(карбоксиметил)карбораны или их производные [1 17, 27-29]. [c.251]

    В отличие от химии низкомолекулярных соединений полноту химической реакции полимера характеризуют не выходом продукта реакции, а степенью химического превращения. Степень химического превращения показывает число прореагировавших звеньев (или функциональных групп). У разных макромолекул в образце полимера это число может быть различным. Поэтому степень химического превращения всегда определяется как средняя величина. Например, у производных целлюлозы (эфиров) определяют среднюю степень замещения — количество прореагировавших гидроксильных групп, приходящееся в среднем на одно глюкозное звено. Каждое элементарное звено целлюлозной макромолекулы содержит три гидроксильные группы, поэтому степень замещения может меняться от О до 3 и быть любым дробным числом (см. также с. 121). [c.59]

    Одной из самых сложных проблем очистки сточных вод целлюлозно-бумажной промышленности является удаление лигнина, который переходит в воду при обработке древесины. Это веш ество — сложный органический полимер, различный по составу для разных видов древесины. Его точное строение ие з становлепо. Известно только, что мономерами лигнина являются жирноароматические соединения — производные фенплпронана. Лигнин содержит различные функциональные группы —ОСНз, —ОН (из нпх 0,3-фенольные), =С0, эфирные группы. Из-за присутствия большого числа реакционноспособных функциональных групп лигшш легко вступает в разнообразные химические реакции. [c.109]

    Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилвинилбензола) к которым добавлено некоторое количество дивинилбензола для образования поперечных связей (сшивки). Процесс проводят в инертной среде, в которой мономеры хорошо растворимы, а полимер нерастворим. По окончании реакции растворитель отгоняют с водяным паром или в вакууме. Таким способом получают сферические высокопористые частицы, нерастворимые в кислотах, основаниях и органических растворителях. Их химическая структура показана на рис. У.13. ]Меняя исходные компоненты и их соотношение (например, применяя инициирующие мономеры с различными функциональными группами, такие, как акрилонитрил, винилпиридин, К-винилпир-ролидон, акриловый эфир, диэфир метакриловой кислоты и этиленгликоля), а также условия полимеризации, можно направленно модифицировать не только удельную поверхность и диаметр пор, но и полярность материала. Особенно важным свойством этих полимеров является их гидрофобность, обусловленная отсутствием гидроксильных групп. Малое сродство к соединениям, содержащим гидроксильные группы, имеет [c.324]

    Введение в линейный триазиновый полимер функциональных групп для последующей вулканизации можно осуществить путем добавления в ангидрид, используемый для циклизации, небольшого количества производного перфторкарбоновой кислоты, которое содержит или может дать две различные функциональные группы. Исследована возможность применения двух типов таких производных [6] циклический ангидрид (можно также использовать и полимерный ангидрид) приводит к образованию полимера с боковыми карбоксильными группами, а в случае (о-цианацилгалогенида получается полимер с боковыми ннтрильными группами [c.229]

    Одной из важнейших особенностей полимеров, содержащих боковые глицидные группы, является их высокая реакционная способность. Установлено, что при соответствующем расположении а-оксидного кольца и правильно выбранных условиях реакции эти полимеры могут вступать во взаимодействие более чем с 50 различными функциональными группами [85]. Раскрытие оксидного кольца в зависимости от типа реагента может протекать с образованием оксониевого производного и без него. Высокая реакционная способность глицидных групп используется для модификации пленкообразователя и проведения сшивания при формировании покрытия из него. Обрабатывая сополимеры глицидилметакрилата ненасыщенными жирными кислотами (акриловой или метакриловой), получают пленкообразователи, покрытия из которых обладают высокой твердостью, ударной прочностью, атмосферо- и химической стойкостью [69]. [c.54]

    Карбоцепные полимеры, в элементарных звеньях которых не имеется ненасыщенных групп, относятся к предельным полимерам (полиэтилен, полипропилен и др.). Такие полимеры отличаются меньшей реакционной способностью вследствие малой подвижности макромолекул. Если же в составе элементарных звеньев имеются ненасыщенные группы, то такие полимеры принадлежат к непредельным полиуглеводородам алифатического ряда (полибутадиен, полиизопрен и др.). Полимерные соединения, содержащие атомы галоида, относят к группе полимеров галоидопроизводных предельных или непредельных углеводородов (поливинилхлорид, политетрахлорэтилен, поливинилиденхлорид и др.). Присутствие в элементарных звеньях полимеров различных функциональных групп (гидроксильные, карбонильные, карбоксильные, простые эфирные, сложноэфирные, аминогруппы и др.) позволяет отнести такие полимеры к соответствующим группам. Так, например, к полимерам группы алифатических спиртов и их производных принадлежат  [c.105]


    По данным работы [51], резкое увеличение скорости полимеризации низкомолекулярных смол в результате упорядочения структуры покрытий и снижения внутренних напряжений можно осуществить путем модификации поверхности подложки соединениями, содержащими группы, химически взаимодействующие с полимером и с подложкой, в частности производными фенилэтоксисилана с различными функциональными группами. Аналогичные закономерности наблюдаются при использовании этих соединений в качестве аппретур и модификаторов наполнителей и армирующих материалов. [c.202]

    Из гетероцепных полимеров-носителей применяют поли-этиленимин [13], полиэтиленгликоль [14], поли-а-1-аминокис-лоты, полиамиды, полиэфиры и полифосфазены. Свойства полиэтиленимина зависят от того, линейный он или разветвленный. Разветвленный полимер наряду со вторичными содержит третичные и первичные аминогруппы, которые используют для связывания ФАВ. Полиэтиленгликоль широко применяется для модификации белков (см. гл. 5). Поли-1-а-аминокислоты, а также регулярные полипептиды могут содержать различные функциональные группы, обладают вполне определенной вторичной структурой и способны к биодеструкции. Поли- -лизин и поли- -глутаминовая кислота — наиболее употребляемые носители этого типа, однако оптически чистые поли-1-аминокис-лоты пока еще трудно доступны. Поли-D, L,-сс, р-аспартамид, получаемый полимеризацией аспарагиновой кислоты в виде по-лисукцинимида, может быть легко превращен в различные производные [15] и с химической точки зрения удобен как полимер-носитель. Правда, из-за наличия звеньев с D-конфигураци-ей он не способен к биодеструкции. Потенциально ценные как полимеры-носители четвертичные полиэфирамины, способные к биодеструкции, синтезированы сополимеризацией с раскрытием [c.47]

    Это либо белки (глютиновые, казеиновые клеи), либо углеводы (крахмальные, декстриновые клеи), либо синтетические полимеры (карбамидо- и фенолоформальде-гидные смолы, поливинилбутираль, поливинилацетат, сополимеры винилхлорида с винилиден-хлоридом, полиамиды, латексы различных каучуков) [76, 107— 113]. Покрытия, наносимые на бумагу, также должны иметь высокую адгезию к субстрату. Поэтому в качестве покрытий применяют производные целлюлозы, феноло-, карбамидо- и меламиноформальдегидные смолы, полиэфиры, изоцианаты, поливинилхлорид, эпоксидные смолы, латексы карбоксилатных и бута-диен-нитрильных каучуков и др. [114, 116—121]. В некоторых случаях для повышения адгезионной прочности применяют модифицированные полимеры или комбинации полимеров. Например, в нитроцеллюлозные лаки вводят поливинилацетаты, поливинил-бутирали, полиакрилаты [116]. Полиэтиленовые покрытия имеют низкую адгезию к бумаге [122]. Модификация полиэтилена винилацетатом, этилакрилатом 1123] и применение хлорированного полиэтилена [124] способствуют увеличению адгезии покрытия к бумаге. Повышение температуры полиэтилена и бумаги в момент нанесения покрытия также увеличивает прочность связи [122,125], очевидно, за счет появления новых функциональных групп на окисленной поверхности полимера. [c.260]

    Л1оиомеры, содержащие одинаковые функциональные группы, не способные в условиях данной реакции взаимодействовать между собой. К шш относятся, папр., диамины, дикарбоновые к-ты и их производные II др. Полимер в атом случае образуется путем взаимодействия друг с другом молекул различных мономеров этого тииа, содержащих соответстпенно различные и способные взаимодействовать друг с другом функциональные группы. Примером может служить П. диа.мииов с дихлорангидрида.ми  [c.429]

    Пролонгирующее действие полимеров м. б. усилено, если использовать полимеры, имеющие функциональные группы в этом случае могут образовываться более прочные соединения типа комплексов или солей. Для их получения используют поливинилпирролидон, крахмал, декстран, поливиниловый спирт, полиэти-ленгликоль и сополимеры. Наиболее известны комплексы полимеров с иодом, к-рые обладают высокой бактерицидной активностью. Их применяют как в виде водных р-ров, так и в виде гелей, пленок, нитей. Препарат иодинол —1%-ный водный р-р йодного комплекса поливинилового спирта, нашел широкое применение в медицине и ветеринарии. В качестве антисептиков предложены йодные комплексы поливинилпирролидона. Описано примененпе комплексов железа и декстрана (для лечения анемии), кобальта и декстрана, производных полиэтиленоксида и различных лекарственных препаратов. [c.465]

    Макдоналд и Кэмпбел [6 ] пытались применить реакцию Виттига для синтеза полимеров. Полимеры были получены двумя способами, один из которых заключался во взаимодействии двух различных бифункциональных молекул (диилида и дикарбонильного соединения), а другой — в использовании производного, молекулы которого содержат как илидную, так и карбонильную функциональные группы. [c.161]

    Высокая термостойкость полимеров, макромолекулы которых содержат различные гетероциклы, явилась стимулом для улучшения термостойкости таких классов полимерных материалов, как, например, полиэфиры, полиамиды и др. Их термостойкость, определяемая наличием С00-, ONH- и других функциональных групп, даже в случае ароматических производных редко превышает 350° С. В последние годы появились работы, направленные на получение полимеров, состоящих из чередующихся гетероциклов и групп, характерных для указанных выше классов полимеров. [c.225]

    Регулирование активности реагентов системы. Применение мономеров с другой чауходящей группой. Ранее отмечалось, что для синтеза одного и того же полимера можно использовать различные исходные мономеры. Функциональные группы таких мономеров состоят из двух частей остатка, вступающего в полимерную цепь (эта часть одинакова для всех мономеров), и уходящего фрагмента, который в полимер не вступает и выделяется при поликонденсации в составе низкомолекулярного продукта. Примером функциональных групп такого строения являются производные карбоксильных групп [c.90]

    Большинство процессов химической переработки целлюлозы основывается на реакциях гидроксильных групп целлюлозных макромолекул. Получающиеся производные целлюлозы могут быть разделены на три основных класса молекулярные соединения, продукты замещения и продукты окисления. Молекулярные соединения являются нестабильными продуктами, образованными за счет водородных связей между гидроксилами целлюлозы и некоторыми сильно полярными реагентами. Продукты замещения образуются путем химической реакции между гидроксилами целлюлозы и реагентами, которые связываются с кислородом гидроксила ковалентной связью. К ним относятся сложные и простые эфиры целлюлозы. Эти продукты имеют наибольшее техническое значение. Продукты окисления целлюлозы обычно деструктированы. Они долгое время не имели широкого практического применения. В настоящее время в промышленных масштабах уже производится целлюлоза, окисленная двуокисью азота. Этот продукт применяется в медицине, в первую очередь, как хорошее кровоостанавливающее средство, а также в текстильной и других отраслях промышлен- ности. Окисленные целлюлозы, кроме того, представляют интерес как волокнистые ионообменники. Ведутся интенсивные исследования с целью введения в целлюлозные макромолекулы новых реакционноспособных функциональных групп, использования их для химических превращений, описанных в классической органической химии, синтеза привитых сополимеров целлюлозы и так называемых сендвич-полимеров целлюлозы с другими полимерными веществами. Исследования в области модификации целлюлозы в ближайшие годы безусловно приведут к широкому использованию препаратов модифицированной целлюлозы в различных отраслях народного хозяйства. [c.322]

    Наличие характерных полос разных функциональных групп и интенсивность этих полос в спектрах поглощения, снятых при длине волны более 1 х для различных производных целлюлозы (рис. 19), подтверждают их химическое строение, установленное другими методами. Спектроскопия в инфракрасных лучах показывает кроме того, что большая часть гидроксильных групп участвует в образовании водородных связей. Такое взаимодействие между гидроксилами соседних цепей может привести к возникновению межмолекулярных связей в кристаллических областях полимера (рис. 20). Высокополимерные цепи при sTOiM образуют двухмерные сетки в плоскостях 001. Весьма вероятно, однако, что эти явления происходят также в аморфных областях целлюлозы вследствие способности целей изгибаться при возникновении межмолекулярных связей. Прочность этих связёй может сильно колебаться, если целлюлоза гидратирована или мерсеризована. [c.107]

    Теория и практика ионного обмена в гетерогенных системах продолжает в настоящее время стремительно развиваться. Основная масса выпускаемых промышленностью ионообменных смол представляет собой сополимеры стирола и дивинилбензола, содержащие кислотные или основные функциональные группы, в последние годы проведены многочисленные работы по синтезу новых типов ионитов. Значительный интерес вызвало, в частности, появление макропористых ионитов, содержащих в дегидратированном состоянии каналы и поры, ограниченные уплотненной структурой сетчатого полимера. На этих смолах достигается резкое повышение скорости ионного обмена, особенно для ионов органических веществ, имеющих не очень большой молекулярный вес. Получены иониты, содержащие значительное количество гидрофобных радикалов, способные поглощать в больших количествах и притом обратимо органические вещества из воды, что позволило предложить новые усовершенствованные варианты технологического процесса водоочистки. Синтезированы иониты с различными, в том числе с длинноцепными мостикообразными агентами, например полиметилендиметакриламидом. Зерна последней группы ионообменных смол характеризуются сетчатой структурой с улучшенной равновесной и кинетической проницаемостью. Наконец получены многочисленные новые ионообменники — производные целлюлозы, а также минеральные иониты, например вольфраматы, цирконаты и ионообменные материалы на основе активированных углей различных марок. Особое место занимают жидкостные иониты и другие группы линейных полиэлектролитов, в частности полимерные физиологически активные вещества. [c.3]

    В печатных пастах второго типа внутренняя масляная фаза количественно больше по сравнению с внешней водной фазой. Связующее вещество находится главным образом в водной фазе. Обычно в качестве связующих применяют полимеры с активными группами, способными образовывать поперечные связи с поли-функциональными соединениями. Эти полимеры могут иметь разную структуру, поэтому поведение эмульсионных печатных паст во время печатания и свойства пленок, образованных связующими на тканях, могут быть совершенно различными. В качестве поли-функциональных соединений применяют производные метилолмел-амина и мочевиноформальдегидные смолы. В основе полимеров большей частью лежат акрилаты, бутадиен и другие мономеры. Фиксацию высушенных напечатанных тканей проводят горячим воздухом при 150 °С. Промывка, мыльная обработка или какая-нибудь другая последующая обработка, как и в первом случае, не требуются. Печатные пасты типа масло в воде получили более широкое распространение, чем вода в масле . [c.100]


Смотреть страницы где упоминается термин Полимеры — производные с различными функциональными группами: [c.5]    [c.544]    [c.204]    [c.461]    [c.402]    [c.92]    [c.9]    [c.93]    [c.467]    [c.197]    [c.480]   
Смотреть главы в:

Наводороживание стали при электрохимических процессах -> Полимеры — производные с различными функциональными группами




ПОИСК





Смотрите так же термины и статьи:

Функциональные группы



© 2024 chem21.info Реклама на сайте