Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предел текучести упругости

Рис. 10. Изменение пределов прочности стали при воздействии температуры Ор —предел прочности на растяжение о,— предел текучести Е—модуль упругости. Рис. 10. Изменение <a href="/info/390638">пределов прочности стали</a> при <a href="/info/935346">воздействии температуры</a> Ор —<a href="/info/23380">предел прочности</a> на растяжение о,— <a href="/info/8939">предел текучести</a> Е—модуль упругости.

    Если во всех точках поперечного сечения балки (см. рис. 2) будет достигнуто напряжение текучести, то наступит так называемое предельное состояние, при котором образуется шарнир пластичности. Предельный изгибающий момент, который может выдержать балка в этом случае, определяют как произведение предела текучести на пластический момент сопротивления Значение для прямоугольного сечения высотой к и шириной Ь Ь/1 4 момент сопротивления при упругих деформациях, когда напряжения изменяются линейно от нейтральной оси к крайним волокнам в сечении образца, W = Ьк 16. [c.7]

    Наиболее важными характеристиками механических свойств при выборе материалов являются предел прочности или временное сопротивление а , предел текучести а , относительное удлинение б, относительное сужение 1 1, модуль упругости при растяжении Е (модуль продольной упругости), коэффициент Пуассона л, ударная вязкость а . [c.5]

    Это уравнение отражает идеальное (ньютоновское) течение жидкости, которое характеризуется следующими тремя чертами появлением сдвиговых деформаций при сколь угодно малых напряжениях, отсутствием эффектов упругости при течении и независимостью вязкости от скорости и напряжения сдвига. Полимеры, однако, обнаруживают отклонение от ньютоновского течения по всем указанным признакам. Во-первых, они могут проявлять признаки пластических тел, т. е. тел, характеризующихся наличием предела текучести — критического напряжения, только после достижения которого способно развиваться течение. Во-вторых, течение полимеров сопровождается накоплением высокоэластической энергии, что вызывает появление напряжений, перпендикулярных направлению течения, и, как следствие этого, разбухание экстру-дата, усадку образца и т. д. Полимеры, таким образом, наиболее ярко проявляют признаки вязкоупругих тел. Наконец, вязкость полимеров, как правило, сильно зависит от у и т, уменьшаясь с возрастанием последних (явление аномалии вязкости). Вязкость, соответствующая данному режиму течения и называемая обычно эффективной, будет рассмотрена ниже, здесь же мы остановимся на молекулярной трактовке ньютоновской вязкости  [c.50]

    С понижением температуры для сталей предел прочности, предел текучести и модуль упругости возрастают относительное удлинение и относительное сужение уменьшаются незначительно, а ударная вязкость резко уменьшается. Явлению падения ударной вязкости (хладноломкости) подвержены как углеродистые, так и легированные стали. [c.14]


    В процессе трения, как известно, важна специфика образования и разрушения фрикционных связей. Образование фрикционных связей характерно в основном для сухого трения, однако в той или иной мере оно реализуется и при гранич.ной смазке в условиях неоднородности микрорельефа поверхности и неравномерности распределения нагрузки на фактической площади контакта. Согласно теории И. В. Крагельского [255], различают пять видов фрикционных связей упругое оттеснение (деформация) материала, пластическое оттеснение (деформация) материала, микрорезание, адгезионное нарушение фрикционных связей, когезионный отрыв. Упругое оттеснение материала наблюдается в случае, когда действующая нагрузка не приводит к возникновению в зоне контакта напряжений, превышающих предел текучести. В этом случае такой важный трибологический параметр, как износ, возможен лишь в результате фрикционной усталости. Пластическое оттеснение происходит при контактных напряжениях, превышающих предел текучести (при этом износ определяется малоцикловой фрикционной усталостью). Мпкрорезание наблюдается при - напряжениях или деформациях, достигающих разрушающих значений (разрушение происходит при первых же актах взаимодействия). Адгезионное нарушение фрикционной связи непоередственно не приводит к разрушениям, но вносит определенный вклад в величину напряжений, действующих на контакт. Когезионный отрыв возникает в случае, если прочность фрикционной связи выше прочности нижележащего материала. [c.240]

    Из сказанного видно, что в нерегулярно разветвленных полимерах, как, например, промышленный полиэтилен, такие свойства, как температура плавления, температура размягчения при низких нагрузках, модуль упругости при малых нагрузках, предел текучести, твердость поверхности, зависят главным образом от кристалличности. [c.170]

    Модуль упругости указывает жесткость материала, т. е. его способность выдерживать нагрузку без изменения размеров. Предел текучести указывает на эластичность материала, т. е. способность его выдерживать нагрузку без нарушения целостности. Он также является точкой, в которой упругая деформация сменяется пластическим течением. При пластическом течении кристаллиты, находящиеся внутри материала, скользят относительно друг друга, способствуя непрерывной деформации. Предел прочности является крайней нагрузкой растяжения и характеризует способность выдерживать постоянную нагрузку. Площадь под кривой пределов упругости материала является мерой упругости, т. е. способности поглощать энергию без остаточной деформации, а площадь под всей кривой — способности поглощать энергию и выдерживать большие деформации без разрыва. [c.73]

    Напряжения, возникающие при данном методе, всегда ниже предела текучести, поэтому опасных внутренних напряжений не возникает, а после правки остаточные напряжения отсутствуют, что обеспечивает стабильность формы вала. Продолжительность выдержки вала при нагреве может составлять 1 —3 ч. За это время упругая деформация переходит в пластическую. В процессе правки индикаторы могут измерять как остаточную (пластическую), так и упругую деформации. [c.160]

    Пределы текучести, упругости служат мерой упругих свойств связей, проявляющихся в структуре. Например, для молекулярного течения предел текучести должен быть весьма мал, т. к. упругие свойства связей, препятствующих молекулярному течению, очень малы. Предел текучести для структурированных жидкостей также мал, т. к. упругие свойства связей, препятствующих ньютоновскому течению, малы. При большом наполнении дисперсной фазой тиксотропная структура обладает уже заметными упругими свойствами. Соответственно этому для начала течения необходимо преодолеть упругость связей как всей структуры в целом, так и структурированных оболочек. Если между упругими свойствами всей структуры и оболочками имеется заметная разница, то находят два предела текучести. Если же упругие свойства оболочек весьма малы, а всей структуры велики, то получают кривую течения с одним пределом текучести. [c.141]

    Прочность коагуляционных узлов определяет не только усадку полимера, но и его механическое поведение при повторной деформации. При повторном растяжении на первой стадии до достижения второго предела текучести упруго деформируется возникшая к этому моменту коагуляционная структура. Прочность коагуляционной структуры определяется степенью завершенности процесса коагуляции, о чем свидетельствует отчетливый рост второго предела текучести во времени (см. рис. 2.14). Появление второго предела текучести означает распад коагуляционной структуры под действием механического напряжения. Этот процесс сопровождается заметным уменьшением модуля системы. Скоагулировавшие в процессе усадки фибриллы разобщаются и взаимно ориентируются, что, естественно, приводит к увеличению модуля системы. По завершении этого процесса достигается удлинение, полученное в первом цикле, соответственно, появляется первый предел текучести на кривых растяжения (см. рис. 2.14). При дальнейшей деформации начинается переход полимера в ориентированное состояние путем разрастания специфических микротрещин. Прочность возникающей коагуляционной структуры должна очень сильно зависеть от адсорбционных свойств окружающей жидкой среды. Как было показано в [112], такая зависимость действительно наблюдается экспериментально. Чем в большей степени окружающая среда понижает межфазную поверхностную энергию полимера, тем слабее коагуляционная физическая сетка и тем ниже ее механические характеристики, и наоборот. [c.58]


    Из разрывных свойств основной интерес представляют модуль упругости, предел текучести, предел прочности, деформация в пределах текучести и прочности. [c.73]

    Выше подчеркивалась условность понятия предела текучести (упругости). На самом деле, предел упругости представляет собой напряжение, при котором становится заметным течение, что, в свою очередь, зависит от точности метода исследования и времени действия нагрузки. Во многих случаях при достаточно длительном приложении усилия небольшое течение начинается так же, как у истинных жидкостей, при ничтожно малых нагрузках. Это особенно относится к полимерам, где в силу их необычных свойств течение происходит крайне медленно. [c.295]

    Течение консистентных смазок. Отдельные реологические свойства смазок исследуются в разных лабораториях разными методами. Работы, посвященные изучению деформации одного объекта при одинаковых условиях в очень широком диапазоне напряжений или скоростей деформации, немногочисленны, а исследования, охватывающие на одном объекте все основные реологические свойства, насчитываются единицами . По этой причине удобнее рассмотреть отдельно течение смазок, их предел текучести, упругие свойства и тиксотропию. [c.242]

    Рассчитывая аппарат ири повышенных температурах стенок, значения предела текучести и модуля упругости следует принимать при рабочей температуре. [c.54]

    Напряжение в стенке корпуса аппарата, найденное по формуле, аналогичной выражению (121), не должно превышать допускаемое напряжение при рабочей температуре. При проверке устойчивости стеики корпуса ио условию (122) допускаемое напряжение, предел текучести и модуль упругости следует также принимать при рабочей температуре стеики. [c.116]

    Усталость характеризуется номинальными напряжениями предела текучести повторное нагружение макроскопически происходит в упругой области, число циклов до разрушения велико. [c.149]

    Для стали предел текучести яри изгибе иревышает предел текучести ири растяжении и составляет ири а,,200- 500 МПа для образцов прямоугольного сечения соответственно =< (1,44- --1,35) а,,. Это об ьясняется иеоднородностыо напряженного состояния в условиях пластических деформаций при изгибе, когда эпюра напряжений характеризуется кривой (см. рис. 2), а не прямой, как в условиях упругих деформаций. Если для определения действительных напряжений в крайнем волокне при изгибе применять формулы, соответствующие распределению напряжений по кривой, то при этом велич1ша напряжений в край- [c.7]

    НЫХ свойств материала. Распределение напряжений и смещений в этой области отличается от упругого распределения. В схеме квазихрупкого разрушения принимается, что область нелинейных эффектов мала сравнительно с длиной трещины. Это позволяет считать, что размер этой области и интенсивность пластических деформаций в ней целиком контролируются коэффициентом интенсивности К и пределом текучести оо,2. Эта область мала настолько, что поле напряжений вокруг нее все еще описывается асимптотическими формулами. [c.188]

    Таким образом, нагрев углеродистой стагш до 100 вызывает напряжения, равные пределу текучести. Нее процессы в пределах упругих деформаций o6pai имые. [c.143]

    Значения предела текучести и модуля упругости для некоторых наиболее часто применяемых м. таллов прмвелен . в табл. 12, [c.226]

    Формула (50) получена из предположения, что дппще теряет устойчивость формы в пределах упругости и коэффициент запаса устойчивости равен 2,6. Формула (51) предполагает потерю устойчивости формы за пределом упругости, причем коэффициент запаса устойчивости по отношению к давлению, при котором достигается предел текучести при расчетной температуре, принят равным [c.68]

    Пластичные (консистентные) смазки представляют собой пластические коллоидные системы. Это особый класс смазочных материалов, приготавливаемых путем введения в смазочные масла специальных, главным образом твердых, загустителей, ограничивающих их текучесть. Большинство консистентных смазок п широком интервале температур ведет себя как твердые упругие тела. Они приобретают способность необратимо деформироваться (течь), если приложенная сила больше предела текучести смазки. С повышением температуры предел текучести консистентных смазок понижается и при некоторой, определенной для каждой смазки температуре становится равным нулю (смазка течет). Вторым характерным признаком консистентных смазок, отличающим их от смазочных масел, является аномальное внутреннее трение, в отличие от нормальных н идкостей, зависящее от условн течения (структурная вязкость). Эти свойства консп-стентных смазок связаны с их коллоидной природой и структурой. [c.146]

    Механические свойства обратнооомотичеоких и ульграфильтраци.оиных мембран при сжатии представляют особый интерес, так как они соответствуют условиям, в которых находятся мембраны при работе. Изучение текучести при сжатии должно связывать предел текучести с уменьшением проницаемости в процессе разделения. Предел текучести характеризует способность материала выдерживать сжимающие напряжения без остаточной деформации. Кроме того, это также точка, в которой упругая деформация сжатия сменяется пластическим течением. Ее можно определить графически на кривой давление—деформация, проведя касательную к участку З-образиой кривой с наименьшим наклоном и найдя точку касания кривой и касательной (рис. П-13). [c.73]

    Предельное напряжение сдвига То при й = О называется пределом текучести . При напряжениях сдвига меньших наблюдается только упругая деформация, при т — пеупру-гая деформация (течение). [c.233]

    Качество стали оценивается рядом структурнонечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. К первой группе свойств относятся модули упругости Е и коэффициент Пуассона а. Величина Е характеризует жесткость (сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл- Легирование и термическая обработка практически не изменяют величину Е. Поэтому эту характеристику можно рассматривать как структурно-нечувствительную. Коэффициент Пуассона р отражает неравнозначность продольных и поперечных деформаций образца при натяжении. При упругих деформациях л = 0,3. Условие постоянства объема стали при пластическом деформировании требует, чтобы л = 0,5. При определенных значениях относительной деформации 8 > 8т (или 80,2, 8о,з). Зависимость ст(е) отклоняется от прямолинейного закона (Гука). Предел текучести ат(ао,2 или ао,5) связан с величиной 8т по закону Гука ат = 8тЕ. Дальнейшее увеличение деформаций способствует увеличению напряжений. [c.88]

    Параме1р а определяется методами сопротивления материалов, теории упругости, механики трещин и др. и включает в себя компоненты тензора напряжений, зависящие от геометрических характеристик конструкции, внешних силовых нагрузок, упругих свойств материала и др. Коэффициент запаса прочности характеризует уровень напряжений при эксплуатации изделия и устанавливается в зависимости от условий работы на основании статистических данных о работоспособности подобных конструкций. Параметр п косвенно оценивает качество технологии изготовления, расчетов на прочность, материала и др. За предельное напряжение а р принимается одно из значений компонентов тензора напряжений или их определенное сочетание, при котором наступает текучесть, разрушение или нарушение первоначальной формы изделия. Обычно в условиях статического нагруж ения за величину стпр принимают либо предел текучести СТт, либо временное [c.98]

    Часто хрупкое разрушение конструкций происходит от катастрофического распространения трещин при средних напряжениях ниже предела текучести и кажущихся инженеру-конструктору безопасными. Подобные разрушения указывают на недостаточность классических методов расчета на прочность по упругому и пластическому состояниям. Они указывают на необходимость дополне- [c.150]

    В разделе 5.2 дан анализ кинетики МХПМ и долговечности конструктивных элементов при упругих деформациях. За долговечность конструктивных элементов принималось время, в течение которого первоначальное эквивалентное напряжение достигает своего предельного значения, равного пределу текучести. Однако возникновение пластических деформаций не вызывает разрушения. После наступления текучести констрктивный элемент может сопротивляться действию внешних сил до тех пор, пока деформации (напряжения) не достигнут некоторого критического значения, вызывающего разрушение. В этом случае анализ долговечности значительно усложняется, поскольку кинетика МХПМ определяется двумя факторами напряжениями и деформацией. Кроме того, пластическая деформация, наряду с усилением коррозионного растворения металла, приводит к заметному деформационному утонению стенок оборудования. [c.314]

    Изготовление вкладышей из свинцовистой бронзы позволяет ликвидировать этот недостаток. Расплавленную свинцовистую бронзу заливают в трубчатую заготовку и охлаждают. Заготовку механически обрабатывают и разрезают на заготовки вкладышей, каждый из которых затем устанавливают в приспособление (полупостель) на прессе и обжимают приложением усилия к торцам до достижения окружного относительно пластического деформирования, равного 2,2 - 2,8%. После механической обработки вкладыщ устанавливают в приспособление и упруго деформируют, прилагая усилие в плоскости стыков до достижения изгибных напряжений сжатия в антифрикционном слое в среднем сечении вкладыша, равных 0,20 - 0,25 предела текучести. После этого приспособление с вкладышем устанавливают в печь, нафевают до 245 - 255 °С и выдерживают 3,5 - 4,5 ч. Затем вкладыщ, предварительно извлеченный из приспособления, охлаждают на воздухе и окончательно обрабатывают. В результате пластического деформирования вкладышей повышается сопротивление совместному действию окружных механических (монтажных) и температурных напряжений сжатия. Нафев и вьщержка вкладыша при приложенном усилии в плоскости стыков, обеспечивающем упругое деформирование антифрикционного слоя в указанных пределах, приводят к появлению остаточных напряжений растяжения в нем после охлаждения, кото- [c.231]


Смотреть страницы где упоминается термин Предел текучести упругости: [c.16]    [c.18]    [c.18]    [c.648]    [c.118]    [c.33]    [c.68]    [c.27]    [c.249]    [c.223]    [c.241]    [c.42]    [c.129]    [c.324]    [c.379]    [c.144]    [c.335]    [c.93]    [c.198]   
Высокомолекулярные соединения (1981) -- [ c.360 , c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Предел текучести

Предел упругости

Текучесть



© 2024 chem21.info Реклама на сайте