Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны липидный бислой

    Проникновение ионов через клеточные мембраны. Липидный бислой клеточной мембраны предохраняет клетки от быстрой потери ионов К , СГ и Почему  [c.352]

    В состав клеточных мембран входят в основном белки и липиды, среди- которых преобладают фосфолипиды, составляющие 40—90 % от общего количества липидов в мембране. Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный бислой. В таком бислое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя (рис. 14.2). [c.466]


Рис. 8.12. Модель мембраны, содержащей погруженные в липидный бислой белки [88, 88а]. Рис. 8.12. <a href="/info/196239">Модель мембраны</a>, содержащей погруженные в <a href="/info/265833">липидный бислой</a> белки [88, 88а].
    Целостная структура мембраны создается за счет гидрофобных и электростатических взаимодействий, а не за счет ковалентных связей между составляющими ее молекулами белков и липидов. Гидрофобный липидный бислой представляет естественную преграду для проникновения полярных молекул. Мембраны асимметричны по своему исходному строению, что [c.302]

    Для изучения возможного связывания и влияния ГНР на конформационное состояние липидов мембран клеток в работе изучали взаимодействие ряда ГНР с липосомами, моделирующие мембраны, не содержащие в липидном бислое белков. [c.561]

    Поэтому для изучения сродства и влияния ряда флавоноидов различной структуры — агликонов и гликозидов — на мембраны клеток тканей артерий и вен крыс бьш использован метод спиновых зондов, в котором липофильный спиновый зонд 5 вводили в раствор, содержащий отрезок изучаемого сосуда. При этом зонд 5 встраивался в липидный бислой мембран клеток ткани сосудов и был недоступен для внеклеточной воды. По спектрам ЭПР определяли параметры вращатель- [c.577]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]


    Особое влияние на текучесть мембраны оказывает жесткое четырехчленное кольцо холестерола, погруженное в липидный бислой. У эукариотических клеток при температуре 37 °С холестерол ограничивает текучесть мембраны, а при более низких температурах он, наоборот, способствует поддержанию их текучести, препятствуя слипанию углеводородных цепей. [c.307]

    Интегральные белки имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны. Для выделения интегральных белков необходимо сначала разрушить липидный бислой. [c.585]

    Динамичность мембран. Липидный бислой представляет собой жидкость, в которой отдельные молекулы липидов способны быстро диффундировать в пределах своего монослоя. Отдельные молекулы мембранных липидов и белков способны свободно перемещаться в мембране, т.е. они сохраняют способность к диффузии. Так, молекулы липидов с высокой скоростью перемещаются в плоскости мембраны латеральная диффузия) на расстояние 2 мкм (длина клетки) за 1 секунду. Они легко меняются местами со своими соседями в пределах одного монослоя примерно 10 раз в секунду. Молекулы белков, так же как и липидов, способны к латеральной диффузии, однако, скорость их диффузии в несколько раз ниже, чем молекул липидов. Перемещение мембранных белков в латеральной плоскости может быть ограничено вследствие притяжения между функционально связанными белками и образования кластеров, что в конечном итоге приводит к их мозаичному распределению в липидном слое. [c.36]

    Температура фазового перехода зависит от длины углеводородных цепей, наличия и положения цис-этиленовой связи, введения метильных групп в углеводородные связи цепи липидных молекул. Существенно влияют на температуру фазового перехода также различия в строении полярных головок, а именно, степень ионизации полярных групп, присутствие в водной среде двухвалентных катионов (особенно Са +).Особое влияние на текучесть мембраны оказывает жесткое четырехчленное кольцо холестерола, погруженное в липидный бислой. У эукариотических клеток при температуре 37 С холестерол ограничивает текучесть мембраны, а при более низких температурах он, наоборот, способствует поддержанию их текучести, препятствуя слипанию углеводородных цепей. [c.37]

    Мы уже упоминали о том, что антитела всех классов могут синтезироваться как в мембраносвязанной, так и в растворимой, секретируемой форме. Мембраносвязанные антитела служат рецепторами для антигена на поверхности В-клеток. После стимуляции клетки антигеном те же самые антитела вырабатываются в секретируемой форме. В случае IgM эти две формы различаются только СС-концевым участком ц-цепи у мембраносвязанных антител ц-цепь оканчивается гидрофобным участком, закрепляющим ее в липидном бислое плазматической мембраны В-клетки, тогда как у секретируемых антител IgM имеется вместо этого гидрофильный хвост , позволяющий молекулам выходить из клетки. Способность В-клеток производить ц-цепи с константными областями двух различных типов сначала казалась парадоксальной, так как В-клетки содержат лишь одиу копию гена Сц на гаплоидный геном. [c.42]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    Л. б. не разрушают мембраны, не проникают через липидный бислой и осуществляют обмен в мягких условиях, близких к физиологическим. Благодаря этим св-вам они нашли широкое применение при исследовании структуры и ф-ций биол. мембран. Их используют для избирательного введения меченых липидов в наружный и внутренний монослой мембраны, для направленной модификации в ней липидного состава, для изучения трансмембранной миграции липидных молекул и их распределения в мембранах, для выяснения механизмов функционирования мембранных ферментов. [c.598]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]


    Внутримол. динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, к-рые погружены в липидный бислой, в значит, мере иммобилизованы. Мн. мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращат. подвижностью. Но даже в случае самых подвижных белков измеряемые коэф. диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращат. релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7-10 до 10 см -с . [c.30]

    Как отмечалось во Введении, формальное термодинамическое рассмотрение зависит от того, является ли исследуемая бислойная мембрана в действительности закрытой или открытой системой. Это можно показать на примере способа образования бислойной мембраны, предложенному Тагаки, Азума и Киши-мото [14] (рис. 3). Если липидный бислой образуется из соответствующей монослойной пленки, очевидно, что он является полностью открытой системой. Для такой мембранной системы [c.321]

    Одиночный липидный бислой может быть обратимо образован из (ламеллярного) стандартного состояния следующим образом. Кристалл мембранообразующего липида помещают на поверхность водного раствора, где он набухает и растекается до липидного монослоя при равновесном давлении растекания, С помощью методики Тагаки и др. [14], проведенной в обратимых условиях, бислойная мембрана образуется за счет приложения работы при постоянном уК В ходе этих операций М 2 = М = М Г т. е. химический потенциал липидного компонента всегда тот же, что и в стандартном состоянии. [c.333]

    Исследователи из Калифорнийского университета наблюдали фотоиндуцированный перенос элекфонов от проводящего полимера к бакиболу Сбо - этот кластер способен быть акцептором шести элекфонов. А исследователи из Рокфеллеровского университета экспериментально показали ", что встроенные в биомембраны бакиболы С70 могут транспортировать электроны через липидный бислой. При освещении связанных с мембраной донорных молекул элекфоны переходят на углеродные кластеры. Пока не выяснено, идет ли затем диффузия бакиболов внутри мембраны или электроны последовательно перескакивают с одного кластера на другой. Эти свойства бакиболов (а возможно и углеродных нанометрических трубок) можно использовать в оптико-молекулярной электронике -светочувствительных диодах, солнечных батареях и т.п. [c.155]

    Отщепление сигнальной последовательности у люминальной стороны мембраны, обращенной в межмембранный просвет эндоплазматического ретикулума, по-видимому, приводит к тому, что гидрофобность растущего пептида уменьшается, и его пребывание в липидном бислое становится менее выгодным, чем переход в водную фазу межмембранного просвета. Соответственно, в зависимости от аминокислотного состава и последовательности, в водную фазу будут вытолкнуты либо лишь его водорастворимая часть (скажем, N-концевая часть), как в случае многих трансмембранных белков, либо весь белок по завершении его синтеза, как в случае секретируемых белков. Естественно, переход в водную фазу должен сопровождаться перестройкой пространственной структуры, приобретающей глобулярную конформацию (гидрофобные остатки обращаются внутрь глобулы или глобулярного домена, в то время как гидрофильные экспонируются наружу). [c.285]

    Предполагают, что механизмы такого действия стероидов включают проникновение гормона вследствие легкой растворимости в жирах через липидный бислой клеточной мембраны, образование стероидрецеиторного комплекса в цитоплазме клетки, последующее преобразование этого комплекса в цитоплазме, быстрый транспорт в ядро и связывание его с хроматином. Считают, что в этом процессе участвуют как кислые белки хроматина, так II непосредственно ДНК. В настоящее время разработана концепция [c.276]

    Рис 22 Схемы строения вирусов гриппа (а) 1—гемаглютинин 2 — нейраминидаза 3 — липидный бислой 4 — белковый слой 5 — рибонуклеопротеин и ретровируса ВИЧ (б) 1 — гликопротеин 120 2 — сердцевина 3 — гликопротеин 41 4 — липоидная мембрана 5 — РНК 6 — обратная транскриптаза [c.83]

    Мы не будем приводить здесь аргументы за и против бислойной модели. Эта интереснейшая глава истории науки описана в многочисленных монографиях, специально посвященных мембранам. Основная концепция бислойной структурной организации клеточных мембран стала вскоре общепринятой, и некоторые разногласия касались только расположения в мембране белков. Согласно модели Даниелли и Давсона, белки размещались на поверхности бислоя, где они должны были удерживаться электростатическими силами. Поскольку при этом липидный бислой оказывался заключенным между двумя слоями белка, как масло между двумя ломтиками хлеба, такая модель стала называться моделью сандвича , или, говоря научным языком, унитарной мембранной моделью . Для того чтобы белки покрывали поверхность мембраны как можно более [c.68]

    Доминирование в мембране архебактерий липидов, образованных на основе ди- и тетраэфиров, поставило вопрос о принципиальной ее организации. По современным представлениям, у всех эубактерий и эукариот основу элементарной (липопротеиновой) мембраны составляет липидный бислой (см. рис. 15). Диэфиры архебактерий способны образовывать элементарные мембраны, состоящие из двух ориентированных слоев липидных молекул. Молекулы тетраэфира имеют длину порядка 5—7,5 нм. Толщина мембраны архебактерий примерно 7 нм. Такая мембрана не может быть организована из двух слоев тетраэфирных молекул. Очеввдно, что в данном случае она представляет собой липидный монослой (рис. 103). Монослойные липидные мембраны обладают, очевидно, повышенной жесткостью по сравнению с бислойными. Обнаружение липопротеиновой мембраны, в основе которой лежит [c.411]

    Третий этап характеризуется образованием мембраноатакующего комплекса комплемента. Фрагменты, полученные в результате протеолиза компонентов комплемента, погружаются в липидный бислой клеточной мембраны и вызывают лизис бактериальной клетки. [c.491]

    Точность собираемой таким путем информации зависит прежде всего от качества кристаллов в больщинстве случаев достигается разрешение не выше 1,5 — 2 нм. Тем не менее метод позволяет делать выводы о пространственной организаци 1 молекулы, особенно для больших белков, состоящих из нескольких субъединиц. Так, например, в ходе исследования трехмерной структуры цитохром-- -редуктазы — фермента системы окислительного фосфорилирова-ния в митохондриях — удалось установить общую форму молекулы ивзаимное расположение ее субъединиц (рис.53). Размер молекулы фермента в перпендикулярном к плоскости мембраны направлении составляет около 15 нм. Центральная часть молекулы, толщиной около 5 нм, погружена в липидный бислой и составляет около 30% всего белка. С одной стороны мембраны участок молекулы фермента (— 50% всего белка) выступает над плоскостью бислоя на 7 нм, с противоположной стороны 20% белка) — на 3 нм. Фермент присутствует в кристалле в виде димеров наиболее сильный контакт между мономерами наблюдается в центре мембраны. [c.103]

    У В/см. По своим диэлектрическим свойствам липидный бислой не уступает лучшим из известных а настоящее время изоляторов, таким, как, нвпример, твердый парафин, циркониеаый фарфор или поливинилхлорид. При этом, а отличие от пробоя в твердых телах, действие электрического поля на бислой является обратимым после снятия поля мембрана полностью восстанавливает свои функции. [c.573]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Впоследствии Дж. Даниелли в совместной работе с В. Стейном (1956) несколько усовершенствовал предложенную ранее модель, чтобы учесть возможность гидрофобных взаимодействий неполярных боковых цепей аминокислотных остатков с липидными молекулами, а также согласовать ее с уже известным в то время фактом облегченной диффузии через мембрану некоторых низкомолекулярных водорастворимых веществ. Было предположено, что белок на поверхности мембраны находится в развернутой конформации, а его алифатические цепи частично проникают в липидный бислой (рис. 313). На отдельных участках мембраны белок полностью пронизывает липидный бислой. формируя в нем поры, через которые могут транспортироваться различные водорастворимые веществе. [c.581]

    Трехслойная структура наблюдалась на фиксированных срезах многих биологических мембран. Основываясь на этом морфологическом сходстве, Дж. Д. Робертсон в 1959 г. предположил, что все клеточные мембраны — как плазматические, так и внутриклеточные — построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны. В целом модель, предложенная Дж. Д. Робертсоном в 1960 г. (рис. 314), во многом сходна с классической моделью Дж. Даниелли основу мембраны составляет липидный бислой, а ее нелипидные компоненты (прежде всего бе.юк) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами электростатически и за счет гидрофобных взаимодействий. Однако в модели Робертсона нашла отражение еще одна важная структурная особенность мембраны — ее асимметрия. [c.582]

    Общие представления о пространственном строении молекулы Ка .К -АТФазы были получены с помощыо различных подходов. На основании результатов электронно-микроскопических исследований двумерных кристаллов белка была построена трехмерная модель Na , К -АТФазы с разрешением 2 нм. В очищенном препарате фермента, представляющем собой фрагменты плазматической мембраны, молекулы белка (в концентрации до I г/мл) плотно упакованы в липидном бислое. В результате длительного ингибирования этих препаратов при пониженной температуре в присутствии иоиов и ванадата происходит ассоциация молекул фер- [c.623]

    Рис 27 Модель клеточной мембраны прокари от I — липидный бислой II — интегральные белки III — олигосахаридная боковая цепь в гликолипиде IV — углевод V — гликопротеин [c.100]

    Э. Гортер и Ф. Грендель выдвинули представление о липидном бислое как о полупроницаемом барьере, окружающем клетку. Представление о том, что с мембранами связаны белки, впервые в 1935 г. высказал Дж. Даниелли. В том же 1935 г. Дж. Даниелли совместно с X. Даусоном выдвинули гипотезу об общем принципе структурной организации клеточных мембран как трехслойной структуре — своеобразном сэндвиче, где двойной слой ориентированных одинаковым образом липидных молекул заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. [c.33]

    В липидный бислой погружены и встроены молекулы белков, способные передвигаться в мембране. Следовательно, мембраны не являются системами, состоящими из жесткофиксированных элементов жидкостно-мозаичная модель представляет мембрану как море жидких липидов, в котором плавают айсберги белков (рис. 2.5). [c.34]

    Разность потенциалов между внутренней и наружной сторонами плазматической мембраны-так называемый мембранный потенциал-зависит от распределения электрического заряда (рис. 18-6). Заряд переносят через мембрану нервной клетки небольшие неорганические иошл, главным образом N8, К , С1 и Са , причем проходят 0Ю1 через липидный бислой только по специальным каналам (см. тл. 6). При открывании или закрывании ионных каналов распределение зарядов изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигнала нервными клетками зависит от каналов с регулируемой проницаемостью-так называемых каналов с воротами . Наиболее важны два типа каналов  [c.76]

    Различия в проницаемости плазматической мембраны и тонопласта обусловливают разницу в составе растворимых компонентов цитоплазмы и содержимого вакуоли. Проницаемость этих двух мембран регулируется тур-гортым давлением и зависит от множества мембранных транспортных белков, переносящих определенные сахара, аминокислоты и другие метаболиты через липидный бислой (см. гл. 6). По своему составу цитоплазма качественно и количественно отличается от содержимого вакуоли. Поскольку, однако, лшшдный бислой тонопласта не обладает механической прочностью, гидростатическое давление в цитоплазме и в вакуоли должно быть приблизительно одинаковым. Следовательно, эти два компартмента должны иметь одинаковый осмотический баланс, необходимый для поддержания тургора. [c.186]

    Изучение белков, содержащихся в плазматической мембране эритроцитов, позволило сформулировать новые представления о строении мембран. Возникло, в частности, предположение о том, что по крайней мере некоторые мембраны имеют скелет . В мембране эритроцита человека содержится пять главных белков и большое число минорных. Большинство мембранных белков-гликопротеины. К интегральным белкам в мембране эритроцита относится гликофорин ( переносчик сахара ). Его молекулярная масса составляет 30000 гли-кофорин содержит 130 аминокислотных остатков и множество остатков сахаров, на долю которых приходится около 60% всей молекулы. На одном из концов полипептидной цепи располагается гидрофильная голова сложного строения, включающая в себя до 15 олигосахарид-ньк цепей, каждая из которых состоит приблизительно из 10 остатков сахаров. На другом конце полипептидной цепи гликофорина находится большое число остатков глутаминовой и аспарагиновой кислот (рис. 12-20), которые при pH 7,0 несут отрицательный заряд. В середине молекулы, между двумя гидрофильными концами, располагается участок полипептидной цепи, содержащий около 30 гидрофобных аминокислотных остатков. Богатый сахарами конец молекулы гли-1Кофорина локализуется на внешней поверхности мембраны эритроцита, выступая из нее в виде кустика. Считают, что расположенный в середине молекулы гликофорина гидрофобный участок проходит сквозь липидный бислой, а полярный конец с отрицательно заряженными остатками аминокислот погружен в цитозоль. Богатая сахарами голова гликофорина содержит антигенные детерминанты, определяющие группу крови (А, В или О). Кроме того, на ней имеются участки, связывающие некоторые патогенные вирусы. [c.347]

Рис. 21-19. Молекулы различных полярных липвдов после завершения их синтеза встраиваются в липидный бислой клеточных мембран в определенных соотношениях. Основная масса полярных липидов встраивается в бислой мембран эндоплазматического ретикулума. Эти липиды поступают затем последовательно в мембраны аппарата Гольджи, секреторные пузырьки и плазматическую мембрану. При помощи специфических белков липиды эндоплазматического ретикулума переносятся через цитозоль и встраиваются в митохондриальные мембраны. Путь мембранных липидов показан красным цветом. Рис. 21-19. <a href="/info/445072">Молекулы различных</a> полярных липвдов после завершения их синтеза встраиваются в <a href="/info/265833">липидный бислой</a> <a href="/info/1532051">клеточных мембран</a> в <a href="/info/26387">определенных соотношениях</a>. <a href="/info/500278">Основная масса</a> <a href="/info/100877">полярных липидов</a> встраивается в <a href="/info/1567212">бислой мембран</a> <a href="/info/105632">эндоплазматического ретикулума</a>. Эти липиды поступают затем последовательно в <a href="/info/152887">мембраны аппарата</a> Гольджи, секреторные пузырьки и плазматическую мембрану. При помощи <a href="/info/490203">специфических белков</a> липиды <a href="/info/105632">эндоплазматического ретикулума</a> <a href="/info/233605">переносятся через</a> цитозоль и встраиваются в <a href="/info/101059">митохондриальные мембраны</a>. Путь <a href="/info/1327459">мембранных липидов</a> показан красным цветом.
    Функции липидной части мембраны. Липиды, входящие в состав мембран, служат растворителем для их интегральных белков, барьером проницаемости для полярных молекул. Гидрофобные жирорастворимые вещества легко проходят через липидный бислой. Малые молекулы газов — кислород, двуокись углерода и азот легко диффундируют через гидрофобную область мембраны. Липиды мембраны обеспечивают ее жидкостность или текучесть. Жесткость определяется степенью насыщенности жирных кислот в фосфолипидах и наличием холестерина. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот и чем больше содержание холестерина. От нее зависят такие функции мембраны, как транспорт веществ через мембрану, взаимодействие рецепторов с лигандами. Основой старения и атеросклероза является понижение жидкостности мембран. [c.101]

    Белки мембран встроены в липидный бислой. Различают внешние (периферические) белки — непрочно связанные с поверхностью мембраны внутренние (интегральные) белки — погруженные внутрь мембраны гидрофобными радикалами аминокислот прошивающие белки — пронизывают мембрану насквозь. Периферические и частично интегральные белки связаны с углеводами и являются рецеп- [c.101]


Смотреть страницы где упоминается термин Мембраны липидный бислой: [c.30]    [c.31]    [c.303]    [c.573]    [c.581]    [c.623]    [c.343]    [c.346]    [c.642]    [c.324]    [c.101]   
Теоретические основы биотехнологии (2003) -- [ c.30 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.46 , c.47 , c.48 , c.49 , c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Липидный бислой

Мембраны бислой



© 2024 chem21.info Реклама на сайте