Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественное и количественное определение промежуточных продуктов

    При изучении механизма многостадийных процессов возникает проблема установления природы промежуточных продуктов реакции. Обнаружение в ходе электродного процесса тех частиц, которые в соответствии с предполагаемой последовательностью стадий оказываются промежуточными продуктами реакции, является важным критерием при выборе механизма процесса. Качественное и количественное определение промежуточных продуктов может быть осуществлено [c.338]


    КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ПРОМЕЖУТОЧНЫХ ПРОДУКТОВ [c.210]

    Выяснение механизма многостадийного электродного процесса часто представляет собой сложную задачу, поскольку в принципе допустимы различные пути реакции. Возможности различных методов, которыми пользуются при анализе зависимостей тока от потенциала, ограничены, и часто не удается однозначно указать механизм процесса. После 1950 г. на этом пути были достигнуты значительные успехи, но по-прежнему не достает методик качественного и количественного, если это возможно, определения промежуточных продуктов, концентрации которых малы. [c.192]

    Методы обработки результатов, описанные в этой главе, дают очень много для выяснения механизмов реакций, но качественное и количественное, если это возможно, определение промежуточных продуктов все же является желательным, а для сложных процессов просто необходимым. Такая задача оказывается особенно трудной, если концентрации промежуточных продуктов очень низки. [c.210]

    Изучение состава — это установление качественного и (или) количественного состава сырья, промежуточных продуктов и готовой продукции. Оценка заключается в установлении соответствия содержания компонента в основной массе вещества определенным требованиям (критериям). Синоним оценки — контроль химического состава веществ. Управление составом состоит в использовании полученных данных для целей производства, например введение добавок реагентов или изменение условий проведения процесса в зависимости от состава сырья или полупродуктов или принятие той или иной схемы переработки сырья. [c.228]

    Как уже упоминалось (см. 6), о природе восстанавливающегося (окисляющегося) вещества судят на основании значения табл. 3 в приложении I), концентрацию изучаемого вещества в растворе определяют по величине Определение числа г из полярограмм изложено ниже ( 7). Промежуточные продукты восстановления (окисления) могут быть обнаружены качественно и определены количественно, если полярограмма имеет несколько волн. [c.120]

    Развитие и совершенствование количественного анализа так же, как и качественного, неразрывно связано с развитием промышленности. Количественное определение состава сырья, топлива, промежуточных и конечны.х продуктов производства — обязательная составная часть контроля производственных процессов в металлургической, химической и других отраслях промышленности. [c.172]

    Технический анализ — это раздел аналитической химии, включающий химические, физико-химические и физические методы анализа, применяемые для контроля качественного и количественного состава сырья, промежуточных продуктов и готовой продукции предприятий и определения соответствия их техническим условиям и общесоюзным стандартам. [c.141]


    Количественным анализом называется раздел аналитической химии, посвященный определению количественного состава анализируемого вещества. Количественный анализ, так же как и качественный, развивался и совершенствовался с развитием промышленности. Количественное определение состава сырья, топлива, промежуточных и конечных продуктов производства — обязательная составная часть контроля производственных процессов в металлургической, химической и многих других отраслях промышленности. [c.173]

    Углеводородным составом масла определяются поведение его в условиях эксплуатации, количественные и качественные показатели процесса производства масла из данного сырья и т. д. Поэтому определение группового углеводородного состава исходного сырья, промежуточных и конечных продуктов широко проводится в исследовательских и заводских лабораториях. [c.210]

    Моча в определенной степени отражает работу почек — основного выделительного органа организма, а также динамику обменных процессов в различных органах и тканях. Поэтому по изменению количественного и качественного ее состава можно судить о состоянии отдельных звеньев обмена веществ, избыточному их поступлению, нарушению гомеостатических реакций в организме, в том числе связанных с мышечной деятельностью. С мочой из организма выводятся избыток воды, многие электролиты, промежуточные и конечные продукты обмена веществ, гормоны, витамины, чужеродные вещества (табл. 49). Суточное количество мочи (диурез) в норме в среднем составляет 1,5 л. Мочу собирают в течение суток, что вносит определенные затруднения в проведение исследований. Иногда мочу берут дробными порциями (например, через 2 ч), при этом фиксируют порции, полученные до выполнения физической работы и после нее. Моча не может быть достоверным объектом исследования после кратко- [c.465]

    При изучении механизма многостадийных процессов возникает проблема установления природы промежуточных продуктов реакции. Обнаружение в ходе электродного процесса тех частиц, которые в соответствии с предполагаемой последовательностью стадий оказываются промежуточными продуктами реакции, является важным критерием при выборе механизма процесса. Качественное и количественное определение промежуточных продуктов может быть осуществлено при помощи вращающегося дискового электрода с кольцом (см. 35). Для обнаружения промежуточных продуктов реакции используют также метод осциллографической полярографии, хронопотенциомет-рию и метод ступенчатого изменения потенциала. Так, если в ходе катодного процесса образуются частицы, которые могут подвергаться электроокислению, то ток окисления этих частиц можно наблюдать при быстром изменении потенциала электрода в анодную сторону. При изучении реакций с участием органических веществ применяется метод электронного парамагнитного резонанса (ЭПР). Так как органические радикалы должны отойти на достаточное расстояние от поверхности электрода, прежде чем их удастся обнаружить при помощи ЭПР, этот метод позволяет фиксировать относительно стабйльные радикалы (с периодом полураспада 5= 1 сек). [c.354]

    Другой подход характерен для пражской школы, занявшейся под влиянием работ Брдички и Визнера (1948) электродными процессами с сопряженной химической стадией. Эти исследователи, и особенно Коутецкий, постулировали некоторый механизм реакции и затем получали соответствующие поляризационные характеристики, а также выражение для предельного тока. Данный метод восходит к Эйкену (1908) и был применен, в частности, для разрешения старой проблемы разряда комплексного металлического иона с предшествующей диссоциацией. Выли достигнуты значительные успехи при описании довольно простых процессов, таких, как восстановление с предшествующей рекомбинацией ионов, причем таким способом была исследована кинетика ряда реакций. Разработка Эйгеном и сотрудниками релаксационных и вариационных методов отчасти лишило полярографию после 1954 года монопольного положения, тем не менее вклад пражской школы остается одним из основных достижений современной электрохимии. Применение метода к более сложным процессам в принципе возможно, хотя и связано с математическими трудностями, однако определение механизма реакции путем анализа экспериментальных поляризационных характеристик является весьма ненадежным и часто не дает однозначных результатов. Это замечание применимо ко всем методам анализа, основанным только на поляризационных характеристиках, и указывает на необходимость развития методов, позволяющих качественно и возможно даже количественно определять промежуточные продукты реакции. В этой области многое остается сделать, а мы располагаем для этого в настоящее время только ограниченным числом методов. [c.16]


    Иращающийоя дисковый алектрод с кольцом используется в практике для качественной и количественной идентификации промежуточных и песочных продуктов электродной реакции, образующихся на дисковой электроде. Эти продукты, отбрасываясь центробежной силой к кольцевому электроду, реагируют на нем при определенном потенциала. Значение потенциала кольцевого электрода, при котором будут реагировать продукты дискового электрода, характеризуют их вид, а ток кольцевого алектрода - их количество. Дисковый электрод.о кольцом может быть применен только в ограниченных случаях  [c.71]

    В настоящее время все большее значенне приобретают физические методы исследования органических соединений. С помощью этих методов можно решать задачи качественного и количественного анализа. Однако химические методы до сих пор остаются одним из основных видов функционального органического анализа. Обычно они основаны на простых химических реакциях, вполне доступны для каждой лаборатории и дают достаточно точные результаты. Особый интерес химические методы функционального анализа органических соединений представляют при определении степени чистоты веществ, малых концентраций органических соединении и при необходимости быстрого анализа промежуточных продуктов реакции. Предлагаемое вниманию читателей руководство Критч-филда по функциональному анализу органических соединений будет весьма полезным не только для органи-ков-аналитиков, но и для лиц, работающих в смежных с органической химией областях — биохимиков, фармакологов, физико-химиков и др. В настоящее время вопросы функционального органического анализа все больше интересуют органиков-сиитетиков, работающих в области физиологически активных соединений, природных и высокомолекулярных полимерных соединений. Б книге Критч-филда приводятся химические методы анализа органических соединений, содержащих наиболее типичные функциональные группы. В первой главе, посвященной методам [c.5]

    В работе [133] показано, что понятие константы скоростей взаимнообратных направлений реакций в идеальном газе и вопрос об их связи с константой равновесия имеют определенный смысл при выполнении следующих условий а) скорость изменения концентраций промежуточных продуктов мала по сравнению со скоростью реакции, б) реакция происходит в среде, состояние которой либо термодинамически равновесно, либо достаточно близко к таковому. В указанных условиях отношение констант скоростей двух направлений реакции равно ее константе равновесия, вычисленной при температуре среды. Эта закономерность свойственна не только одностадийным, но и сложным многостадийным реакциям. Отношение констант скоростей взаимно-обратных направлений реакции в пространственно-однородной среде, состояние которой характеризуется двумя различными температурами подсистем Г] и Го, равно константе /((ГьГг), определяющей равновесие реакции в такой не полностью равновесной среде. Если равновесие среды существенно нарушается в ходе самой реакции, то состояние среды в общем случае зависит (причем не только в количественном, но и в качественном отношении) от направления реакции. При этом отношение констант скоростей реакции уже не является термодинамической характеристикой среды. — Яр ж. ред. [c.20]

    Из приведенных данных видно, что увеличение веса катализатора по отношению к весу превращаемого масла влияет как на общий выход продуктов превращения, так и на глубину превращений (в сторону разукрупнения исходных молекул). Без учета качественного состава фракций катализата можно провести аналогию между влиянием повышения температуры на выход фракций и влиянием увеличения концентрации катализатора в опытах равной длительности. Как видно из графиков (рис. 1), в балансовом отношении определенный выход фракций можно получить, снижая температуру (например, с 300° до 250°) при одновременном значительном увеличении весового отношения между катализатором и углеводородами. В опытах с небольшим количеством катализатора первичные процессы превращения углеводородов быстро приводили к дезактивации катализатора и дальнейшее нагревание не при-водит к существенным изменения м в балансе фракций. Повы- шение количества катализатора до определенных пределов уве- ьо личивает срок его работы, что приводит к иным количествен- ным и качественным показателям. Ряд авторов (5—6) приизу-чении термокатализа масляных фракций нефти при невысоких соотношениях веса катализатора к весу масла не наблюдали глубокого превращения, связанного с газообразованием, хотя всеми отмечены ощутимые изменения во фракционном составе. Как видно из данных табл. 1, основная масса углеводородов исходного масла выкипает в пределах 450—550°. В превращениях с небольшим количеством катализатора исходные углеводороды оказались заметно превращенными с образованием бен-зино-керосиновых и легких масляных фракций. Увеличение количества катализатора на единицу веса превращаемого масла приводит к образованию газообразных углеводородов. Это дает основание полагать, что бензино-керосиновые фракции являются промежуточным продуктом в превращениях и при наличии достаточного количества активного катализатора претерпевают дальнейшие превращения, вплоть до газообразных углеводородов. Данные группового состава бензинов показывают, что по мере углубления превращения растет содержание ароматических и метановых углеводородов в расчете на бензин за счет исходных полициклических нафтенов. [c.17]

    Однако на практике получение чистых поверхностей, например, при исследовании гетерогенных каталитических реакций в системе газ - твердое тело, — задача почти невыполнимая. Для многих конкретных каталитических реакций необходим активный катализатор избирательного действия, обладающий высокой термостойкостью. В этих случаях в качестве носителей можно использовать оксиды кремния и алюминия. Получить поверхности определенного типа при этом исключительно сложно, поэтому для оценки процессов, протекающих на поверхности, приходится прибегать к расчетным модельным приближениям. Во всех этих случаях необходимы экспериментальные исследования, которые в принципе можно провести описываемыми ниже методами электронной спектроскопии и т.п. Методы элементного анализа поверхности позволяют определить качественный и количественный состав поверхностного слоя и его состояние. Обычно каталитические реакции сопровождаются различными изменениями поверхности, и для их y ieтa необходимо рассматривать свойства активных центров, структуру промежуточных продуктов, механизм реакции и т.д. Решив поставленные выше задачи, можно будет находить и "проектировать" новые каталитические процессы. [c.40]

    Добавки, как правило, не только ускоряют окисление, но и влияют на селективность основных направлений процесса. Инициатор иногда может функционировать и как индуктор, вступая на определенных стадиях в сопряженные реакции. Нужно заметить, что в сложных окислительных процессах четко определить пределы действия сореагентов на стадиях сопряжения (индукторов) и инициаторов (источников первичных радикалов или стимуляторов их образования) весьма трудно, особенно в замкнутых системах, где качествеиньш и количественный состав продуктов меняется во времени. Промежуточные продукты могут выступать сначала в роли инициаторов процесса, а затем, при увеличении их концентрации, стать сореагентами сопряженных стадий (это может не только повлиять на скорость реакции, но и обусловить появление качественно новых цепей, приводящих к изменению состава продуктов), и, наконец, они могут замедлить окисление исходного вещества. [c.20]

    Все перечисленные варианты хроматографии применяются или могут быть использованы для анализа лакокрасочных систем и исходного сырья, в частности для- разделения сложных многокомпонентных смесей растворителей, масел, для анализа мономеров, контроля чистоты исходных и промежуточных продуктов, для определения примесей даже в следовых концентрациях, для идентификации органической частинеизвестных образцов и т. д. В данной книге, однако, невозможно рассмотреть все методы. В дальнейшем будет рассмотрена только газожидкостная проявительная роматография. Именно этот метод, благодаря присущим ему пре-муществам, в последнее десятилетие был особенно развит и ши-око используется в практике качественного и количественного ализа [c.17]

    В 1959 г. А. Н. Фрумкин с сотр. предложили новый вид электрода— вращающийся дисковый электрод с кольцом (в.д. э.к.). Вокруг дискового электрода концентрически расположен второй электрод в виде тонкого кольца (рис. 4.11). Зазор Гг—г, между диском и кольцом невелик — меньше 1 мм. На дисковом электроде протекает основная электрохимическая реакция. Задача кольцевого электрода — количественное, а иногда и качественное определение продуктов реакции (промежуточных и конечных), образующихся на диске и переходящих в раствор. Для этого на кольцо накладывают такой потенциал, при котором эти продукты электрохимически реагируют — восстанавливаются или окисляются. Гидродинамическая теория конвективной диффузии позволяет точно рассчитать долю N частиц, отбрасываемых от дискового электрода, которые достигают поверхность кольцевого электрода и вступают на нем в реакцию. Эта доля зааисиг от соотношения радиусов диска и кольца и обычно составляет около 40%. Таки. 1 образом, по предельному току кольцевого электрода /к можно судить о скорости образования продуктов реакции на дисковом электроде. [c.84]

    Если описанные выше эксперименты показывают качественно, что стадии, определяющей природу продукта, предшествует равновесие, которое устанавливается лишь частично, то ниже приводятся методы, с помощью которых можно количественно оценить соотношение кзакл/кобр (см. начало гл. 6). Для этого сравнивают константу скорости образования промежуточной частицы кпр с константой скорости общей реакции кпркзакл/(кобр + кзакл). Для определения кпр необходимо ввести в реакцию ловушку, которая взаимодействует с промежуточной частицей с константой скорости, большей кобр, и поэтому подавляет обратную реакцию, так что в присутствии ловушки к р [c.235]

    Таким образом, если экспериментально достаточно подробно исследованы зависимости от времени концентрации исходных, промежуточных субстратов и продуктов ферментации, получены кинетические кривые роста отдельных микроорганизмов, то можно на основе качественного совпадения экспериментальных зависимостей с одной из теоретических, представленных на рис. 5.69-5.70, идентифицировать лимитирующую стадию развития симбиотической ассоциации. Более строгий количественный подход основан на моделировании роста микробной ассоциации с помощью решения прямой задачи и определении кинетических параметров роста при решении обратной. Рассмотрим особенности и возможности этого подхода на примере анализа закономерностей роста метангенерирующей микробной ассоциации. [c.672]


Смотреть страницы где упоминается термин Качественное и количественное определение промежуточных продуктов: [c.31]    [c.408]    [c.275]    [c.275]    [c.408]    [c.142]   
Смотреть главы в:

Двойной слой и кинетика электродных процессов -> Качественное и количественное определение промежуточных продуктов




ПОИСК





Смотрите так же термины и статьи:

Промежуточный продукт



© 2024 chem21.info Реклама на сайте