Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационное число растворите

    Растворимость солей щелочных металлов с повышением температуры, как правило, возрастает. В ряду Li — s тенденция к образованию кристаллогидратов солей уменьшается (их известно много для лития, меньше — для натрия и совсем мало — для других щелочных металлов), что обусловлено ростом радиусов ионов. В кристаллогидратах катионы щелочных металлов проявляют следующие координационные числа (к. ч.) 4 и 6 у Li+, 6 у Na+ и К+. 8 у Rb+ и s+. В разбавленных водных растворах средние значения к.ч. ионов LI+, Na+, К+, Rb+, s+, по-видимому,. близки соответственно к 5, 6, 7, 8, 8. [c.305]


    В связи с этим были сделаны некоторые предполюжения относительно образования подобных систем, а именно, если такие системы образуются при дегидрировании колец, сгруппированных в виде треугольника, то свободные радикалы образуются в тех случаях, когда дублет является низшим энергетическим состоянием. Примером такой структуры является перинафтил, изображенный на рис. 44, а. Практически все первичные асфальтены из нефтей содержат гетероатомы (N), а также образующие комплексы ионы тяжелых металлов (Ni + и V +), на что указывает устойчивость этих веществ к окислению. Если координационные числа гетероатомов и углерода отличаются друг от друга, то в сферическом объеме, равномерно заполненном конденсированными системами колец, создаются пустоты, которые могут быть заполнены ионами металлов. При этом могут возникнуть структуры, подобные порфи-ринам. В случае образования дырки небольших размеров возникает радикал (рис. 44, б). При больших пустотах могут возникнуть бирадикальные состояния даже в отсутствие гетероатомов, за счет структурных дефектов (рис. 44, в). Специальные измерения изменений соотношения ЭПР-сигналов в растворах асфальтенов ( U) показали, что ионы ванадия размещаются как во внутренних дефектах молекулярных слоев, так и частично занимают межслоевое положение. [c.225]

    Здесь выделены жирным шрифтом чаше встречающиеся координационные числа в тех случаях, когда возможны два различных типа координации. Координационное число 6 встречается в комплексны соединениях Р1 +, Сг +, Со +, РеЗ+, координационное число 4 — в комплексах Си +, 2п +, Р(1 +, Pt +, координационное число 2 — в комплексах А +, Са+. Приведенные координационные числа соответствуют максимальному насыщению координационной сферы и относятся к к о о р д и н а ц и о и н о - н а с ы щ е н н ы м соединениям. Не всегда в растворах соблюдаются условия, необходимые рля этого, и тогда образуются координационно-ненасыщенные комплексы с меньшими координационными числами. [c.585]

    Координационное число центральных ионов в аквокомплексах в разбавленных растворах (т. е. при достаточном количестве молекул воды) в общем случае соответствует значению характерного координационного числа катиона (акцептора) и аниона (донора). Так, для ионов АР+, СгЗ+, Со + координационное число обычно равно шести, а для Ве + — четырем. В разбавленных водных растворах, следовательно, эти ионы находятся в виде гидратированных комплексных ионов типа октаэдрического [А1(0Н г) в тетраэдрического [Ве(ОН2)4] - Для иона СГ, имеющего четыре неподеленные электронные пары, координационное число, по-видимому, равно четырем, что отвечает образованию четырех водородных связей. [c.129]


    Лекция 16. Общие сведения о конплексних соединениях. Комплексообразо-ватель, лиганды, координационное число. Способность лементов периодической системы к комплексообрглзовянию. Теория образования комплексных соединений. Классификация комплексов. Номенклатура. Диссоциация комплексных соединений в растворе. Применение комплексных соединение в технологических процессах. [c.180]

    При выводе основных уравнений предполагалось, что координационное число, характерное для разбавленного раствора, сохраняет свое значение во всем диапазоне концентраций, а процесс диссоциации протекает не ступенчато, через промежуточные гидраты, а сразу до свободного иона. [c.26]

    При сверхвысоком давлении и нагревании ( 1,2 10 Па 1300°С) была получена особая модификация 5102, названная стишовитом. Его плотность на 60% выше плотности кварца. Это объяняется тем, что стишовит имеет структуру типа рутила (см. рис. 70, б), т. е. кремний в нем имеет координационное число 6. Благодаря плотной структуре стишовит еще менее активен, чем кварц. Он устойчив даже к концентрированному раствору плавиковой кислоты. [c.417]

    Координационное число не является неизменной величиной для данного комплексообразования, а обусловлено также природой лиганда, его электронными свойствами. Даже для одних и тех же комплексообразователей и лигандов координационное число зависит от агрегатного состояния, от концентрацни компоиентов и температуры раствора. [c.585]

    В уравнениях (3.16) и (3.17) Хт—мольная доля вещества матрицы мембраны 2гт, е т и е тт — координационное число и параметры парного взаимодействия молекул газа и структурных элементов матрицы. Если взаимодействие в мембране, которая рассматривается как раствор, определяется только дисперсионными силами, величину Ф,т можно оценить [11] неравенством [c.75]

    Чему равно координационное число никеля в ионах, образующихся при диссоциации комплекса (в водных растворах)  [c.39]

    Прн этом первоначально фиолетовый цвет раствора меняется сначала на голубовато-зеленый, а затем на темно-зеленый. Хлорид-ионы проникают во внутреннюю сферу комплекса и соединяются с атомом хрома координативной связью. Но так как координационное число хрома остается равным шести, хлорид-ионы вытесняют нз внутренней сферы молекулы воды, сами занимая их места, и общее число лигандов в комплексе не может быть больше шести. [c.134]

    Возможно, что в таких растворах, по крайней мере до некоторого значения потенциала или до определенной плотности тока, разряжаются гидратированные ионы или комплексы с меньшим координационным числом аддендов, для разряда которых требуется меньшая энергия активации процесса и концентрация которых в растворе не слишком мала. [c.342]

    Для случая образования в растворе единственного одноядерного комплекса рассчитать его концентрационную константу нестойкости К и координационное число п потенциометрическим методом. Для расчета величин равновесных потенциалов бр воспользоваться значениями э. д. с. элементов, составленных из электрода сравнения и электродов I рода с известными исходными концентрациями комплексообразователя и лиганда в электролитах. [c.90]

    Принимая, что перенапряжение катодных реакций обусловлено замедленностью стадии перехода, определить, в каких случаях в заданном интервале плотностей тока имеет место совместное выделение водорода и металла. Выбрав металлы, осаждение которых не сопровождается выделением водорода, рассчитать для них величину равновесного потенциала после добавления в раствор лиганда в 100-кратном избытке, если известна константа нестойкости образующегося комплекса /< . Для упрощения расчетов принять координационное число равным 1. [c.154]

    Измерения ведут при таких добавках лиганда, при которых первоначально образующийся осадок Ай1 растворяется, образуя комплекс с максимальным координационным числом. [c.168]

    Экспериментальные исследования карбонила кобальта состава Сог(СО)8 показывают, что это легкоплавкое вещество (т. пл. 5ГС), в воде не растворяется, но хорошо растворимо в органических растворителях, разлагается при 60° С. Соединение диамагнитно. В ИК-спектре обнаружены частоты Поглощения 2077, 2054 и 2034 см , отвечающие концевым СО-группам, и частота 1859 см , соответствующая мостиковым СО-группам. Координационное число Со в карбониле равно 6. [c.153]

    Большинство неорганических соединений бериллия (П) в обычных условиях полимерны и являются кристаллическими веществами белого цвета. Независимо от типа кристаллических решеток соединений координационное число бериллия 4. В кислых водных растворах ионы Ве + находятся в виде прочных аквокомплексов [Ве (ОН2)41 в сильно щелочных растворах, по-видимому, в виде ионов [Ве(0Н)4) . [c.565]

    Механизм этой реакции состоит из двух стадий образование комплексного соединения и его реакция с двойной связью. Комплексное соединение, согласно Прево [55], образуется путем взаимодействия 2 молей бензоата серебра с одним молем йода. В растворе бензоат серебра оуш ествует в виде комплексной соли с координационным числом одного из атомов серебра равным двум. Существование аниона комплекса, в котором серебро обладает таким координационным числом было установлено Мак-Дуголлом и Алленом [39]. Кроме того, Прево [55f] удалось установить положительную природу йода в комплексе путем изучения его реакции с фенилацетиленом. Эти реакции могут быть выражены следующими уравнениями  [c.376]


    Одной из наиболее характерных особенностей окрашенных комплексов является ступенчатое образование их. Хорошо известны комплексные группы с координационным числом 4 и 6. Наряду с такими соединениями в растворе, в зависимости от концентрации вещества, от pH раствора и от других условий часто образуются группы с меньшим координационным числом. Эти группы имеют нередко различную интенсивность окраски и различные цвета. [c.244]

    Рассчитаем число способов, которым можно разместить к-ю молекулу полимера, если в растворе уже присутствует (к 1) молекула. Ясно, что (А -1) молекула занимает (Аг-1)г узлов. Для удобства расчета будем рассматривать раствор с постоянным числом узлов, равным Л д, где /Уд — число Авогадро. Таким образом, первый (концевой) сегмент к-й полимерной молекулы можно разместить в растворе [/Уд - к - 1)г способами. Следующий сегмент можно будет разместить способами (2— координационное число), но часть мест может случайно оказаться занятыми сегментами полимерных молекул, введенных в раствор ранее. Доля этих случайно занятых полимерными молекулами узлов будет представлять собой отношение занятых полимерными молекулами мест к общему числу узлов. Так как количество занятых узлов после введения первого сегмента / -й молекулы составляет к— )г + 1, то доля свободных мест равна [Л д-(у( -1 )/ -1 /Л д Таким образом, число возможных размещений первых двух сегментов полимерной молекулы будет составлять [/Уд -(k- )r Z[N -(к- )г - /N/ . Для третьего сегмента число возможных размещений составляет (2-1 ) /Уд-(А - )/ - 2 /Л д, где множитель (2-1) (вместо 2) учитывает, что одно место в координационной сфере уже занято предыдущим сегментом, а множитель (А д-(А -1)г — 2 //Уд учитывает долю свободных мест в растворе. Продолжая аналогичным образом, получаем, что число размещений (О ) -й полимерной молекулы равно [c.211]

    В соответствии с устойчивым координационным числом Т1 (III) его оксид Т1гОз (фиолетовый) имеет структуру типа а-А120з (см. рис. 72) хлорид Т1С13 (фиолетовый) — слоистую структуру в кислых растворах существует аквокомплекс [Т1(0Н 2) который вхо- [c.537]

    Введенные в полярную жидкость ионы нарушают структуру растворителя на больших расстояниях вокруг ионов. На это указывают результаты рентгенографических и спектроскопических 1 следований растворов и некоторые другие факты (например, увеличение энтропии растворителя при высоких концентрациях ионов). Особенно заметно разрушающее действие на структуру воды ионов больших размеров, тогда как ионы небольшого размера помещаются в пустотах воды и мало изменяют ее структуру. Координационное число ионов средних размеров, особенно одновалентных, в разбавленных растворах равно четырем. Очевидно, они просто замещают молекулы воды в целом, не изменяя структуры последней. Правда, они притягивают и ориентируют находящиеся вблизи молекулы воды и, образуя сольватную оболочку, несколько искажают структуру воды в ближайшем окружении (уменьшается объем, теплоемкость, энтропия, сжимаемость раствора). Однако можно считать, что структура воды в растворе искажена незначительно и да51 е в сольватной оболочке напоминает структуру чистой воды. [c.421]

    Анализируя координационные числа многих комплексных соединений, Л. Вернер пришел к выводу, что заряд центрального иона (или, точнее, степень окнслеппостн центрального атома) является основным фактором, влияющим на коордипациопное число. Миже сопоставлены наиболее характерные координационные числа в растворах и заряд центрального иона  [c.585]

    Чтобы сделать вывод о различии в электронной структуре неразумно также сравнивать только ограниченные участки спектров ЭПР ряда соединений, например только д или А . Так, для многих комплексов Со(И) [22] с координационным числом 5 величина Л, лежит в интервале от 90-10 " до 100-10 " см , а величина Pj—часто в интервале от 0,017 до 0,020 см . Водные растворы Со(СНзКС)5 в присутствии избытка HjN [23] имеют величину Л, =61 Ю " см , что свидетельствует на первый взгляд о большей ковалентности, чем обычно. Однако рассчитанное значение Р составляет 0,0180 в соответствии со многими данными для других изученных соединений. [c.230]

    Селективность пористых мембран. Обратимся к рис. IV-27, где показана зависимость концентрации Na l и КС1 в фильтрате от концентрации их в исходном растворе х. Вертикальная прямая 1 на рисунке соответствует той концентрации электролита, при которой воды в растворе достаточно лишь для заполнения первичной и вторичной гид-ратных оболочек ионов электролита, а прямая II — концентрации, при которой вся вода включена только в первичные гидратные оболочки, что соответствует границе полной гидратации (ГПГ). При расчете этих концентраций приняты следующие координационные числа гидратации лка+=6, /гк+ =6, лсг=8, с учетом, что с каждой молекулой воды в первичной гидратной оболочке соединяется 3 молекулы воды во вторичной оболочке [159]. [c.205]

    Показана [174] возможность использования обратного осмоса для определения координационных чисел гидратации на примере ионов К+ и Li+. В основе предлагаемого метода лежит явление прекращения перехода раствора через мембрану из ацетата целлюлозы, когда концентрация электролита превышает ГПГ. Опыты проводились в ячейках типа И или III (см. рис. III-3 и III-5). В предварительных экспериментах было подтверждено определенное ранее значение ГПГ для Na l, равное 3,96 моль/л воды. Исходя из принятых на основе литературных данных значений координационного числа гидратации л ча = 6 (см. стр. 202), [c.212]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    Рассмотрим окись хрома, СГ2О3. В объеме твердой СГ2О3 катионы Сг " , октаэдрически окруженные шестью анионами (структура алунда), физически идентичны центральным катионам октаэдрических Сг " -комплексов в растворе. Но на поверхности кристалла могут появляться ионы хрома с различными зарядами и координационным числом, образующиеся путем следующего механизма. [c.25]

    Как указывалось выше, в соединениях бериллия имеется значительная доля ковалентной связи. Это проявляется в сравнительно небольшой электропроводности нх расплавов (даже ВеРг), в гидролизе сэлей по катиону, в растворимости ряда соединений Вев органических растворителях. В кристаллах, растворах, комплексах (в том числе существующи.х в газовой фазе) атом Ве имеет координационное число 4. С лигандами он образует 4 химические связи, которые близки к ковалентным, две нз иих — донорно-акцепторные. Расположение связей тетраэдрическое, что свидетельствует о 5/5 -гибридизации валентных орбиталей атома Ве. [c.320]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Гидролиз по катиону. Катион в водном растворе существует в виде катионно1 о аквакомпл кса. Гидролиз по катиону (имеющего координационное число б) можно представить схемой  [c.176]

    Представим раствор полимера как некоторую регулярную систему в виде лабильной рещетки с координационным числом Z-Состоит такая квазирешетка из п ячеек. [c.105]

    В соответствии с устойчивым координационным числом Ti (III) его оксид TijOs (фиолетовый) имеет структуру типа а-АЦОз (см. рис. 93) хлорид Ti lg (фиолетовый) — слоистую структуру (см. рис. 178) в кислых растворах существует аквакомплекс [Ti (0Н2)в1 , который входит в состав ряда кристаллогидратов и титановых квасцов + 1 [c.506]


Смотреть страницы где упоминается термин Координационное число растворите: [c.428]    [c.469]    [c.542]    [c.198]    [c.656]    [c.178]    [c.178]    [c.108]    [c.339]    [c.441]    [c.576]    [c.619]    [c.196]    [c.156]    [c.543]   
Методы измерения в электрохимии Том2 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Координационное числ

Координационное число иона в растворе

Координационные по координационному числу

Число в растворах

Число координационное



© 2024 chem21.info Реклама на сайте