Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линоленовая кислота синтез

    Жиры. Жиры весьма часто встречаются как в животных организмах, так и в растениях. Как было указано, они представляют собой сложные эфиры трехатомного спирта—глицерина и различных кислот, главным образом стеариновой, пальмитиновой, олеиновой, линолевой и линоленовой. Это доказано их расщеплением на глицерин и кислоты и последующим синтезом жиров из полученных продуктов. [c.257]


    Жиры как глицериды высших жирных кислот. Нахождение и распространение в природе, их физиологические функции. Кислоты, входящие в состав жиров предельные — пальмитиновая, стеариновая, лауриновая, миристиновая, бегеновая непредельные — олеиновая, линолевая, линоленовая. цис-транс-Изомеркя непредельных карбоновых кислот малеиновая и фумаровая, олеиновая и элаидиновая. Коричные кислоты, их роль при переносе энергии в растениях. Оксикислоты рицинолевая и диоксистеариновая кислоты. Искусственный синтез жиров. Жидкие и твердые жиры превращение жидких жиров в твердые (маргарин). Омыление жиров щелочное, кислотное, энзиматическое. Усвоение жиров животным организмом, роль желчных кислот в усвоении жиров. Мыла, механизм их моющего действия. Искусственные моющие средства. Проблема уничтожения их отходов. Олифа, сиккативы. [c.187]

    Большие количества льняного масла идут на изготовление олифы и масляных красок. Олифу готовят, проваривая масло с небольшим количеством окислов марганца или свинца или солей этих металлов со смоляными кислотами (см. кн. II, Изопреноиды ), При этом происходят двоякого рода процессы. Во-первых, изолированные двойные связи линолевой и линоленовой кислот перемещаются в сопряженное положение, а сопряженные двойные связи окисляются кислородом воздуха по схеме своеобразного диенового синтеза  [c.310]

    Предполагается, что в синтезе арахидоновой кислоты (АК) участвует четыре десатуразы - Д9, Л12, Аб и Л5 (катализирующие реакцию образования двойной связи Z-конфигурации реги-оспецифично по отношению к карбоксильной группе ЖК), одна элонгаза (катализирующая присоединение С2-блока к карбоксильному концу ЖК), обеспечивающих последовательное превращение стеариновой кислоты через олеиновую, линоле-вую, у-линоленовую и дигомо-у-линоленовую кислоты в АК. [c.4]

    Кислоты с несколькими двойными связями (линолевая, линоленовая) синтезируются только растениями и поэтому являются незаменимыми компонентами пищи. В организмах животных они необходимы как исходные материалы в синтезе простагландинов, недостаток которых вызывает замедление роста, поражение кожи, нарушение функции почек, органов размножения (с. 290). [c.563]

    Синтез в области липидов изомеров известной структуры с различным положением и конфигурацией двойных связей представляет задачу интересную, но систематически решенную лишь сравнительно недавно. И здесь ключевыми являются ацетиленовые соединения, позволяющие ввести 1 ис-олефиповые связи, обычно конденсацией натрийацетилена с а, ш-иодхлоралканом, который можно затем перевести в карбоновую кислоту через цианид с последующим стереоспецифическим восстановлением ацетиленовой связи. Этим путем были получены разнообразные изомеры олеиновой кислоты [102]. Иная методика использована для введения двойных связей, разделенных метиленовой группой, как в линоленовой кислоте. В этом случае ацетиленовый реактив Гриньяра сочетается с пропаргильным галогенидом в присутствии медного катализатора, что дает 1,4-дииновую систему. Эта последовательность реакций может быть повторена при соответствующем реактиве Гриньяра (например, из тетрагидропирани-лового эфира пропаргилового спирта). В результате получится 1,4,7-триин с г мс-кон-фигурацией всех связей [103]  [c.225]


    В случае синтетического варианта, т. е. осуществления производства предельного пищевого жира, в диету пришлось бы добавлять небольшое количество смеси линолевой, линоленовой или (меньше) арахидоновой кислоты. Суточная потребность в них 3—6 г. Вряд ли для этого стоило бы в будущем осуществлять синтез Бергельсона или Преображенского, проще взять природное растительное масло. [c.501]

    Алкиды представляют собой сравнительно высоковязкие продукты поликонденсации многоосновных кислот, многоатомных спиртов и жирных кислот растительных масел. Теоретически любые одно- или многоосновные кислоты и многоатомные спирты могут быть использованы для синтеза алкидов. Однако промышленное применение нашли только те из них, которые экономичны и обеспечивают получение смол с оптимальными пленкообразующими свойствами. Для производства алкидов используются как растительные масла, представляющие собой эфиры жирных кислот и глицерина, так и свободные жирные кислоты.-При использовании в качестве сырья жирных кислот могут быть применены любые многоатомные спирты или их смеси это позволяет избежать присутствия в рецептуре смолы глицерина, входящего в состав растительных масел, и получать смолы с улучшенными свойствами. Помимо индивидуальных жирных кислот могут быть применены также специально подготовленные смеси жирных кислот растительных масел. Например, из растительных масел могут быть удалены такие нежелательные кислоты, как линоленовая, вызывающая пожелтение, или пальмитиновая и стеариновая, образующие с окисью цинка нерастворимые мыла. Кроме жирных кислот растительных масел одноосновными кислотами могут служить канифоль, жирные кислоты таллового масла, а также бензойная, пелар-гоновая, 2-этилгексановая и другие кислоты. [c.11]

    Особое значение для человека имеют полиненасыщенные жирные кислоты. В организме они не синтезируются. При непоступлении их с пищей нарушается обмен жиров, в частности холестерина, наблюдаются патологические изменения в печени, коже, функции тромбоцитов. Поэтому такие ненасыщенные жирные кислоты, как линоленовая и линолевая, — незаменимые факторы питания. Кроме того, они способствуют выходу из печени жиров, которые синтезируются в ней, и предупреждают ее ожирение. Такое действие ненасыщенных жирных кислот называется липотропным эффектом. Ненасыщенные жирные кислоты служат предшественниками синтеза биологически активных веществ — простагландинов. Суточная потребность человека в полиненасыщенных кислотах в норме составляет примерно 15 г. [c.187]

    Муравьиная кислота применяется при крашении тканей, для удаления шерсти с кож и в производстве смол. Она находит широкое применение в промышленности органического синтеза (например, для формилирования аминов и для приготовления промышленных катализаторов). Безводную уксусную кислоту называют ледяной , так как она замерзает при 17° С, образуя прозрачные, бесцветные кристаллы. Уксусная кислота является очень хорошим растворителем для многих органических веществ. Она применяется для получения ацетилцеллюлозы и при крашении тканей. Масляную кислоту добавляют к маргарину для придания ему вкуса масла. Натриевые и калиевые соли пальмитиновой (С15Н31СООН) и стеариновой (С17Н35СООН) кислот представляют собой мыла. Стеариновая кислота идет наприготовление косметических кремов, свечей, мастик для полов и ваксы для чистки обуви. Ненасыщенные олеиновая, линолевая и линоленовая кислоты будут рассмотрены в главе 24. [c.205]

    В третьем методе синтеза, разработанном Осбондом, использован путь, принципиально применимый также для получения линоленовой и Y-линоленовой кислот, а также обсуждаемой арахидоновой кислоты. Первая стадия синтеза заключается в получении спирта П1 при взаимодействии 1-бромоктина-2 (I) с димагнийпроизводным пропаргилового спирта П. Реакцию проводят в тетрагидрофуране в присутствии однохлористой меди. Такой путь дает лучшие результаты, чем взаимодействие пропаргилового спирта с дигидропираном с последующим добавлением этилмагнийбромида, в результате чего получается соединение, которое может быть использовано для конденсации с соединением I. [c.599]

    Основные научные работы посвящены химии природных соединений. Осуществил первый полный синтез линоленовой кислоты из ацетиленовых соединений. Провел анализ индийских эфирных масел. Член ояда научных обществ. [c.360]

    Важнейшие индивидуальные натуральные к-ты-линоле-вая, линоленовая и арахидоновая, принимающие участие в синтезе простагландинов в организме человека (см. Незаменимые жирные кислоты), рицинолевая кислота, олеиновая кислота, стеариновая кислота. [c.445]

    Незаменимыми (эссенциальными) являются линолевая, линоленовая и арахидоновая кислоты. При достаточном поступлении с пищей линолевой кислоты осуществляется адекватный синтез ара-хидоновой. [c.208]

    У животных превращения олеил-СоА в линолил-СоА не происходит. Вследствие этого полиненасыщенные жирные кислоты, такие, как линолевая, линоленовая и Сго-арахидоновая, являются незаменимыми компонентами пищи. При отсутствии этих незаменимых жирных кислот растительного происхождения ) у животных затормаживается рост, возникают поражения кожи, повреждения почек, нарушается функция размножения. В настоящее время установлено, что одной, хотя, вероятно, не единственной, существенной функцией незаменимых жирных кислот является участие в синтезе (в качестве предшественников) гормонов местного действия , а именно простагландинов (разд. Д, 3) [42]. Установлена особая роль арахидоновой кислоты в тромбоцитах, где под действием липоксигеназы из нее образуется 12-Ь-окси-5,8,10,14-эйкоза-тетраеновая кислота — фактор хемотаксиса нейтрофилов (дополнение 5-Ж). [c.549]


    Для синтеза используют насыщенные или ненасыщенные алифатические карбоновые кислоты С4-С30, например лаурино-вую, нониловую, себациновую, пальмитиновую, стеариновую, олеиновую, линолевую, линоленовую или их смеси. Процесс проводят при температуре 0...10 С, желательно при пониженном давлении в присутствии катализатора фазового переноса — карбоната калия. СКЗ ингибиторов, полученных на основе олеиновой кислоты, при температуре 65 °С составляет У2...77 %. Ингибиторы применяются в виде эмульсий в спирте, керосрше, сырой нефти [22]. [c.336]

    В животных тканях двойная связь в А -положении молекулы жирной кислоты образуется легко, тогда как образование дополнительной двойной связи между Д -двойной связью и метильным концом жирной кислоты невозможно. Млекопитающие не могут синтезировать линолевую кислоту (с двумя двойными связями в А - и -положениях) и а-линоленовую ( igA ). Поскольку эти жирные кислоты используются в качестве предшественников в синтезе других продуктов, они должны обязательно поступать в пищу животных из растений. Эти кислоты называются поэтому незаменимыми жирными кислотами. Недостаток в пище линолевой кислоты вызывает у крыс чешуйчатый дерматит. Поступившая в организм млекопитающих линолевая кислота служи единственным предшественником других полиненасыщенных кислот, таких как у-линоленовая и арахидоновая кислоты (разд. 12.1) (рис. 21-12). Арахидоновая кислота содержит 20 атомов углерода и четыре двойные связи в положениях Д , Д , Д и Д . Эта кислота имеет чрезвычайно важное значение, так как служит незаменимым предшественником большинства простаглан-динов и mpojn6oK aHoe-гормоноподобных веществ, регулирующих разнообразные клеточные функции (гл. 25). [c.634]

    Под витамином Р подразумевается совокупность ненасыщенных жирных кислот — линолевой, линоленовой и арахидоновой (см. главу 7), которые не синтезируются в тканях организма, но необходимы для его нормальной жизнедеятельности. Витамин Р содержится в растительных маслах, суточная потребность человека в нем сравнительно велика и составляет около 5 мг. Витамин Р необходим для нормального роста и регенерации кожного эпителия, а также для синтеза простагландинов — важных биохимических регуляторов (см. главу 9). Витамин Р поддерживает запасы витамина А и способствует его более эффективному воздействию на обмен веществ. Витамин Р снижает уровень холестерина в крови, и в связи с этим для профилактики атеросклероза в медицинской практике применяются препараты незаменимых жирных кислот — линетол и линол. Для предотвращения пероксидного окисления и сохранения биологической активности ненасыщенных жирных кислот требуется витамин Е. [c.143]

    Особый интерес представляют полиненасыщенные жирные кислоты, Линоле-вЗ Я (С 8 2) и линоленовая (С18 з) кислоты не синтезируются в организме животных. Арахидоновая кислота (Сгоч) может образовываться в организме из линолевой. Еще 50 лет назад была показана необходимость этих кислот для роста животных. Полийенасыщенные (эссенциальные) жирные кислоты составляют значительную долю растительных масел и играют большую роль в синтезе простаглан-динов, представляющих собой гормоноподобные вещества, принимающие участие в регуляции многих процессов в организме. [c.12]

    Жирные кислоты, входящие в состав мембранных липидов, представлены насыщенными — стеариновой (18 0), пальмитиновой (16 0), миристиновой (14 0) и ненасыщенными — олеиновой (18 1), линолевой (18 2), линоленовой (18 3), арахидоновой (20 4) — жирными кислотами. Почти все природные жирные кислоты характеризуются цис-конфигурацией двойных связей. Углеводородная цепь в такой конфигурации имеет излом, что нарушает упаковку липидных молекул в бислое. Огромное разнообразие фосфолипидов и различия в их физико-химических свойствах обусловлены возможностью комбинирования полярных головок с различными кислотами. Лизоформы липидов, имеющие одну углеводородную цепь, при высоких концентрациях действуют подобно детергентам и способны разрушать клеточные мембраны. Примером является лизолецитин (1- или 2-ацилглицерофосфо-холин), образующийся из фосфатидилхолина (лецитина) под действием фосфолипаз Aj и А . В его присутствии происходит распад клеточных мембран, что может служить одной из причин смерти при укусе змей. В молекулах одно цепочечных диольных липидов вместо глицерина содержатся более простые спирты — этиленгликоль или пропандиол. Предполагают, что они способны выполнять регуляторную роль в функционировании биомембран. Синтез этих липидов резко усиливается в случае возрастания функциональной активности клеток (например, в созревающих семенах и клетках регенерирующих тканей). [c.16]

    Полиеновые жирные кислоты — линолевая и линоленовая не синтезируются, а поступают с пищей (незаменимые). Остальные — полиненасыщенные — синтезируются из них. Особенно важен синтез арахидоновой кислоты, являющейся предшественником эйкозаноидов. Скорость синтеза жирных кислот регулируется кратковременными и долговременными механизмами контроля. Кратковременная регуляция осуществляется аллостерически на уровне аце-тил-КоА-карбоксилазы (цитрат — активатор, пальмитат и другие жирные кислоты — ингибитор). Долговременная регуляция осуществляется через синтез ферментов и их деградацию при участии гормонов. Инсулин активирует ацетил-КоА-карбоксилазу путем дефосфорилирования фермента (кратковременно) и способен вызывать долговременную индукцию синтеза фермента. Глюкагон и адреналин оказывают противоположное действие. [c.224]

    Витамин Р — полиненасыщенные, эссенциальные (незаменимые) жирные кислоты. К ним относят линолевую, линоленовую и арахидоновую кислоты (см. Липиды). Отсутствие их в пище приводит к избыточному отложению холестерола в стенках кровеносных сосудов. В эксперименте на крысах были установлены признаки Р-авитами-ноза сухость и шелушение кожи, выпадение шерсти, омертвение кончика хвоста, задержка роста и падение веса, которые устранялись введением линолевой, линоле-новой и арахидоновой кислот. Биологическое действие полиненасыщенных жирных кислот состоит в регуляции обмена липидов, усилении липотропного действия хадина. Основное влияние они оказывают на выделение из организма холестерола, переводя нерастворимые его эфиры в растворимые. Установлено, что витамин Р стимулирует биологическое действие водорастворимых витаминов. Витамин Ве (пнродок-син) способствует синтезу витамина Р, из которого в тканях образуются простаглан-дины, относящиеся к гормонам (см. Гормоны). Механизм его действия неизвестен. Этот витамин накопляется в печени, селезенке и надпочечниках. Получают его из льняного и подсолнечного масла. В суточной дозе (20—30 г) растительного масла содержится 1000 мг витамина Р. [c.149]

    Реакции с комплексами Иоцича использованы в синтезах полиненасыщенных кислот алифатического ряда, таких, как линолевая, линоленовая, Y-линоленовая, арахидоновая, докозатетраен-7,10,13,1б-овая и другие. При построении углеродной цепи жирных кислот с помощью комплексов Иоцича различают следующие этапы 1) синтез метиленразделенных (т. е. 1,4-полииновых) соединений путем удлинения цепи на различные фрагменты, 2) введение карбоксильной группы, 3) селективное гидрирование с образованием 1,4-полиеновых систем. [c.208]

    Этот принцип применен в синтезе линолевой (п=4, х=1, у=6) [27, 33], у-линоленовой (п 4, х=2, у=3) [27], линоленовой (п=1, х=2, г/=б) 34], арахидоновой (п=4, х=3, у—2) [27, 28, 31], докозатет-раен-7,10,13,16-овой (л=4, д ==3, /=4) [31], тетракозатетраен-9,12,15,18-овой (п=4,х=3,у—6) и других кислот. [c.210]

    Из пальмитиновой и стеариновой кислот в организме могут быть синтезированы и мононенасыщенные жирные кислоты, например олеиновая. Такие полиненасыщенные кислоты, как линолевая и линоленовая, в организме человека не синтезируются. Следовательно, их источником может быть только пища, т. е. они являются незаменимыми факторами питания. Синтез жирных кислот — энергопотребляющий процесс и требует притока энергии в форме АТФ и восстановленного НАДФ. [c.203]

    Биогенез мембран. Генетическая связь мембранных компонентов клетки выявляет ведущую роль мембран шероховатого ЭР в биогенезе клеточных мембран. Действительно, ЭР — основное место синтеза мембранных белков и липидов клетки. В мембранах ЭР локализованы конечные этапы синтеза глице-ролипидов, мембранных фосфолипидов (от которых зависит, например, сборка мембран митохондрий и хлоропластов), биосинтез стеролов, синтез всех насыщенных жирных кислот и системы преобразования насыщенных кислот в ненасыщенные. Именно в ретикулуме синтезируются свойственные растительным мембранам полиеновые жирные кислоты (линолевая, линоленовая, арахидоновая). Производными мембран ретикулума являются мембраны вакуолей, микротел, сферосом, возможно, наружные мембраны пластид и митохондрий. Ретикулум непосредственно связан с ядерной оболочкой. Через мембранную систему АГ он принимает участие в синтезе плазмалеммы  [c.324]

    Кроме энергетической функции жиры еще выполняют пластическую функцию, являясь поставщиками полиненасыщенных (эссенциальных) жирных кислот. Такие жирные кислоты содержат в своей молекуле две и более двойных связей и в организме человека не синтезируются. Полиненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая и пр.) необходимы для синтеза липоидов клеточных мембран и для образования гормоноподобных веществ - простагландинов, регулирующих в организме тонус гладкой мускулатуры (стенки кровеносных сосудов, трахеи и бронхов, кишечника, матки и т. д.). Полиненасыщенные жирные кислоты обычно входят в состав растительных жиров. Потребность взрослого человека в полиненасыщенных жирных кислотах может быть обеспечена ежедневным поступлением с пищей 20-30 мл растительного масла. В приложении 3 представлено содержание жиров и полиненасыщенных жирных кислот в основных продуктах питания. [c.229]

    Поскольку сферосомы синтезируют жиры, они должны содержать необходимые для этого ферменты. Действительно, в составе сферосом найдены липаза, кислая фосфатаза (апираза), дезоксирибонуклеаза. В сферосомах чешуй луковиц Allium была обнаружена кислая фосфатаза. При этом оказалось, что из всех компонентов эпидермальных клеток Allium лишь одни сферосомы способны расщеплять глицерофосфат, освобождая фосфорную кислоту, чего никогда не наблюдается в митохондриях или пластидах. Следовательно, в сферосомах проходит конечный этап синтеза жира — ацилирование глицерофосфата КоА-производны-ми жирных кислот. Поскольку незаменимые жирные кислоты (олеиновая, линолевая, линоленовая, арахидоновая и т. п.) синтезируются исключительно растительными клетками, в последних должны существовать специальные органеллы для их синтеза. По-видимому, ими и являются сферосомы. [c.45]


Смотреть страницы где упоминается термин Линоленовая кислота синтез: [c.226]    [c.226]    [c.370]    [c.226]    [c.225]    [c.226]    [c.209]    [c.452]    [c.240]    [c.452]    [c.21]    [c.209]    [c.210]    [c.500]   
Органическая химия. Т.2 (1970) -- [ c.599 ]




ПОИСК





Смотрите так же термины и статьи:

Линоленовая кислота



© 2024 chem21.info Реклама на сайте