Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты, гидрирование углеводородов

    Вторая группа процессов гидрирования соответствует восстановлению органических соединений (хотя к восстановлению относят и превращение карбонильных соединений в спирты, не сопровождающееся отщеплением воды). К ним принадлежит гидрирование карбоновых кислот в спирты, спиртов — в углеводороды, амидов кислот и нитросоедииений — в амины и т. д.  [c.458]


    В процессах гидрирования, сопровождающихся выделением воды, равновесие обычно смещено вправо в большей мере, чем в только что рассмотренных случаях. Так, гидрирование спиртов в углеводороды и нитросоединений в амины практически необратимо при всех допустимых температурах. Исключением является превращение карбоновых кислот в спирты [c.462]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, компоненты которой разделяются или идентифицируются лучше, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматографических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводородов, селективно поглощая их в реакторе с силикагелем, обработанным серной кислотой. При реакционной газовой хроматографии используются также реакции гидрирования, дегидрирования, этерификации (для анализа карбоновых кислот в вйде эфиров), пиролиза высокомолекулярных соединений. [c.123]

    Многие процессы гидрирования протекают через ряд промежуточных стадий. Так, карбоновые кислоты, альдегиды и кетоны восстанавливаются последовательно в спирты и углеводороды, нитрилы —в имины, амины и углеводороды  [c.451]

    Сорбционная способность катализатора по отношению к различным веществам или функциональным группам является важным показателем, учет которого при выборе контакта служит мощным средством повышения селективности реакции. Металлические катализаторы, особенно платина, палладий и никель, не имеют специфической способности к адсорбции полярных соединений и функциональных групп, и на их поверхности легче протекает адсорбция реагента по углерод-углеродным связям. Поэтому ненасыщенные кетоны, карбоновые кислоты и некоторые производные ароматических углеводородов гидрируются на металлических контактах главным образом по углерод-углеродным связям с сохранением полярной группы (гидрирование ненасыщенных жиров и кислот, получение циклогексанола [c.452]


    Гидрирование алифатических карбоновых кислот и сложных эфиров. Восстановление карбоксильной группы протекает последовательно через стадии образования альдегидов, спиртов и углеводородов  [c.486]

    Первая реакция аналогична восстановлению алифатических кислот и их сложных эфиров и протекает с теми же катализаторами. Гидрирование с насыщением ароматической системы во многом подобно гидрированию соответствующих углеводородов (на никелевом катализаторе при 160—200 °С и под давлением водорода). Ароматическое ядро карбоновых кислот гидрируется значительно труднее, чем в бензоле или феноле. [c.491]

    Гидрирование кольца ароматических карбоновых кислот во многом напоминает гидрирование соответствующих углеводородов. Реакцию ведут на никелевом катализаторе при 160—200 °С под давлением водорода она идет труднее, чем гидрирование углево дорода или соответствующего фенола. [c.456]

    Направление научных исследований получение основных продуктов азотной промышленности (жидкий аммиак, аммиачная вода, азотная кислота, аммиачная селитра) синтез альдегидов, спиртов, карбоновых кислот, полиэтилена технические газы (кислород, водород, метан) очистка газов и углеводородов от соединений серы гидрирование органических соединений. [c.298]

    Препаративным путем предельные углеводороды могут быть получены восстановлением галоидных алкилов, декарбоксилиро-ванием карбоновых кислот, гидрированием соответствующих непредельных углеводородов и другими способами. Наиболее удо -ным методом препаративного получения газообразных предельных углеводородов, за исключением метана, является метод каталитического гидрирования соотиетствугоишх непредельных углевод -родов. [c.88]

    Непредельные карбоновые кислоты, так же как углеводороды и другие соединения, гидрируются с различной скоростью и легкостью в зависимости от строения, числа заместителей, условий гидрирования и т. п. Как и в случае олефинов, скорость гидрирова- [c.356]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    А.к. обладает хим. св-вами, присущими карбоновым кислотам образует соли, хлораигидриды, ангидриды, сложные эфиры, амиды и пр. Она также вступает в р-ции присоединения, характерные для этиленовых углеводородов. При действии амальгамы Na в водном р-ре и гидрировании в жидкой фазе в присуг Ni, Pt, Pd А.к. превращ. в пропионовую к-ту, в среде ДМСО гидро димеризуется. Присоединение протонных к-т, воды и NH происходит против правила Марковникова с образованием -замещен-ных производных. Как диенофил А к. участвует в диеновом синтезе Конденсируется с хлористыми и бромистыми солями арилдиазония (р-ция Меервейна) I1- I 6H4N2 I + [c.70]

    В последнее время в нашей лаборатории проведено исследование гидрирования фенола на цеолитах. Оказалось, что,в отличие от ароматических углеводородов (бензола, толуола, ксилолов), бензольное кольцо в молекуле фенола гидрируется на цеолитах значительно труднее. Так, на Na-фор-мах цеолитов А, Y, морденит и ЦВМ при 300°С и давлении 2 МПа конверсия фенола в циклогексанол находится на уровне 3-6%. Причина, возможно, заключается в том, что фенол как кислота (более сильная, чем спирты, но слабее карбоновых кислот) отравляет основные центры цеолита, затрудняя реакцию гидрирования. Даже введение палладия в цеолиты начинает сказываты я на активности катализатора только при содержаниях металла 0,5% (рис. 1.39). А при содержаниях палладия от 0,001 до 0,1% активность катализаторов остается на низком уровне. Интересно отметить, что на палладийсодержащих цеолитах, в отличие от чисто Na-форм, в качестве продуктов гидрирования фенола образуются циклогексанол и циклогексанон приблизительно в равных количествах. [c.82]

    Разнообразные синтезы меченых сложных эфиров, альдегидов, углеводородов, аминов и т. д. были осуществлены на основе гриньяровского метода получения карбоновых кислот. Этот метод был использован и у нас в ряде синтетических работ, проводивн1ихся н связи с изучением механизма крекинга [28]. Иснользонание смешанного алюминий-литиевого гидрида в качестве восстановителя сильно упростило путь к спиртам [29]. Это хороший пример эффективного использования реагентов, не применимых вследствие дороговизны в тяжелом органическом синтезе, в целях синтеза меченых соединений. По этой же причине перспективно применение весьма чистых и хорошо управляемых электрохимических методов, а также катализаторов па основе редких элементов. В последнее время мы начали обследование пути каталитического синтеза меченых веществ из СО, которую можно получать прямо из ВаСОд нагреванием с соответствующими восстановителями или из СО2. Так, в частности, гидрированием С О по Фишеру — Трошпу. можно получать смесь из очень большого числа углеводородов нормального строения с постоянным атомным содержанием С по всему ряду. [c.419]


    Кислородные соединения нефти представляют собой в основном производные нафтеновых углеводородов — нафтеновые кислоты. Найдены также фенолы и предельные карбоновые кислоты. Сера в нефти находится или в свободном, растворенном виде, ил1г в виде соединений с открытой цепью (меркаптаны, сульфиды, дисульфиды), или в виде гетероциклических соединений (тиофан1л и, возможно, тиофены). Отмечалось также наличие сероводорода. Азотистые соединения нефти представляют собой, главным образом, производные пиридина, хинолина и их гидрированные формы, а также продукты разложения гемина крови и хлорофилла растений — слоя ные соединения, на.чываемые порфир и н а м и. [c.14]

    За последнее время аланат лития нашел обширное применение в органической химии в качестве гидрирующего средства. Он переводит в спирты не только альдегиды и кетоны, но и карбоновые кислоты и их производные. Из алкилгалогенидов получаются углеводороды, из амидов кислот и нитрилов — исключительно первичные амины. Алифатические нитросоединения переводятся в амины, ароматические — в азосоединения. В то же время спирты и эфиры аланатом лития обычно, не восстанавливаются. Из двойных и тройных связей аланатом лития обычно гидрируются только такие, которые полярны или могут поляризоваться. В этом заложены обширные возможности для селективного гидрирования. Гидрирование аланатом литжя всегда протекает так, что водород присоединяется к углероду, а алюминий—к электроотрицательному гетероатому двойной связи [c.390]

    Известен широкий круг реакций органических соединений на электродах, из которых большое значение для синтеза приобрела, реакция, открытая Кольбе в 1849 г. [798], происходяш ая при электролизе растворов карбоновых кислот и в конечном счете приводяш ая к конденсации двух радикалов молекул этих кислот и образованию соответствующих углеводородов. Вюрц [799] применил ее для электролиза смесей двух различных жирных кислот, что открыло возможность электролитического синтеза разнообразных несимметричных соединений [800, 801]. Фаворский и Лебедева [802—804] при изучении электролитического гидрирования третичных ацетиленовых спиртов обнаружили, что при плотности тока у анода в 1,5—4 ajOM протекает ожидаемое частичное гидрирование спиртов, а при низкой плотности тока (0,1 afdM ) [c.183]

    Получение углеводородов и спиртов из карбоновых кислот или их эфиров гидрированием под давлением нашло доступ в лабораторную практику впервые лишь в последние годы, с тех пор как стал известен процесс, подобный уже давно применявшемуся в технике. Шраут, Шенк и Штикдорн [124] сообщили, что из жиров или эфиров жирных кислот с одноатомными спиртами, а также из свободных кислот при температурах от 300 до 400° и избыточном давлении около 200 атм при применении надлежащих катализаторов получаются в зависимости от условий парафины или первичные спирты жирного ряда с хорошими выходами. Вскоре после [c.63]

    СКИХ углеводородов гидрируются на металлических контактах главным образом по углерод-углеродным связям с сохранением полярной группы (гидрирование ненасыщенных жиров и кислот, получение циклогексанола из фенола и др.). Наоборот, окисные катализаторы, имеющие полярную кристаллическую решетку, обладают специфической сорбционной способностью к полярным группам органических веществ. Полифункциональное соединение при адсорбции на поверхности окисного катализатора оказывается ориентированным по полярной группе, в связи с чем ненасыщенные и ароматические альдегиды, кетоны, карбоновые кислоты, нитросоединения и другие вещества гидрируются на окисных катализаторах преимущественно по кислородсодержащим группам с сохранением ненасыщенности или арохматичности. Все зто не означает, что металлические или окисные катализаторы вообще неактивны в отношении гидрирования других соединений или функциональных групп — оно также обычно происходит, но при более жестких условиях или в случае увеличения продолжительности реакции. [c.650]

    Основы немецкой классификации изложены в книге Gruppeneinteilung der Patentklassen , 4-е издание (1928 г.) которого имеется в русском переводе. В 1958 г. вышло 7-е издание этого труда. Немецкая классификация патентов аналогична принятой в Советском Союзе. Химические патенты относятся в основном к классу 12 Химические способы и аппараты, поскольку они не вошли в другие классы . Класс 12 разделяется в свою очередь на 18 подклассов 12а — Способы кипячения и оборудование для выпаривания, концентрирования и перегонки в химической промышленности 12Ь — Кальцинирование, плавление 12с — Растворение, кристаллизация, выпаривание жидких веществ 12d — Осветление, выделение осадков, фильтрование жидкостей и жидких смесей 12е — Адсорбция, очистка и разделение газов и паров, смешение твердых и жидких веществ, а также газов и паров друг с другом и с жидкостями 12f — Сифоны, сосуды, затворы для кислот, предохранительные устройства 12g — Общие технологические методы химической промышленности и соответствующая аппаратура 12h — Общие электрохимические способы и аппаратура 121 —Металлоиды и их соединения, кроме перечисленных в 12к 12к— Аммиак, циан и их соединения 121 — Соединения щелочных металлов 12т — Соединения щелочноземельных металлов 12п — Соединения тяжелых металлов 12о — Углеводороды, спирты, альдегиды, кетоны, органические сернистые соединения, гидрированные соединения, карбоновые кислоты, амиды карбоновых кислот, мочевина и прочие соединения 12р— Азотсодержащие циклические соединения и азотсодержащие соединения неизвестного строения 12q — Амины, фенолы, нафтолы, аминофенолы, аминонафтолы, аминоантраце-ны, оксиантрацены, кислородо-, серо- и селеносодержащие циклические соединения 12г — Переработка смол и смоляных фракций из твердых топлив, например сырого бензола и дегтя добывание древесного уксуса, экстракция угля, торфа и пр. добывание и очистка горного воска 12s — Получение дисперсий, эмульсий, суспензий, т. е. распределение любых химических веществ в любой среде, использование химических продуктов или их смесей как диспергирующих или стабилизирующих средств. Многие подклассы в свою очередь делятся на группы и подгруппы. [c.89]

    При кипячении растворов боралкилов в диглиме или три-глиме (т. кип. 216° С) с карбоновой кислотой происходит разложение боралкилов, сопровождающееся выделением предельного углеводорода, т. е. процесс, аналогичный гидрированию олефина без поверхностно-активных катализаторов  [c.53]

    Скорость гидрирования в основном обусловлена природой гидрируемой связи легче гидрируются ацетиленовые соедакения, олефины, труднее - ароматические углеводороды, альдегиды, кетоны, карбоновые кислоты и их производные. [c.26]

    Предельные углеводороды получают методом каталитического гидрирования непредельных углеводородов, восстановлением галоидных алкилов, декарбоксилирова-нием карбоновых кислот и др. [c.101]

    Одно из преимуш,еств этого способа заключается в том, что при конденсации можно применять как кетоны, так и альдегиды, и, следовательно, возможен синтез 9-алкилфенантренов. Желаемое 9-метилпроиз-водное было получено исходя из ацетофенона и оксиндола. Продукт конденсации I был подвергнут гидрированию, а полученный при гидролизе циклического амида амин III превращен в метилдигидрофенантрен-карбоновую кислоту (V) через соль диазония IV. Эфир кислоты был переведен в уретан VI, последний подвергнут гидролизу. Следовало ожидать, что первичным продуктом этой реакции явится аминодигидро-фенантрен однако образование его не было установлено, так как, очевидно, это соединение сразу отщепляет аммиак и непосредственно превращается в углеводород VII. [c.19]


Смотреть страницы где упоминается термин Карбоновые кислоты, гидрирование углеводородов: [c.471]    [c.496]    [c.246]    [c.188]    [c.654]    [c.685]    [c.82]    [c.597]    [c.603]    [c.116]    [c.82]    [c.364]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1006 ]




ПОИСК







© 2025 chem21.info Реклама на сайте