Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро сплаве с палладием

    Из па )ладия изготовляют некоторые [шды лабораторной по суды, а также дета.>]н аппаратуры для разделения изотопов водорода. Сплавы палладия с серебром применяются в аппаратуре связи, в частности, для изготовления контактов. В терморегуляторах и термопарах используются сплавы палладия с золотом, платиной и родием. Некоторые сплавы палладия применяются в ювелирном деле и зубоврачебной практике. [c.699]


    Медь н ее сплавы 0 П 6-9 Серебро 6 Палладий до 1 Детали точных приборов, требующих постоянства электрических параметров для защиты серебряных контактов от потускнения [c.921]

Рис. 3.16. Коэффициенты проницаемости (а) и диффузии (б) водорода в сплавах палладия с серебром [8] Рис. 3.16. <a href="/info/146020">Коэффициенты проницаемости</a> (а) и диффузии (б) водорода в <a href="/info/135294">сплавах палладия</a> с серебром [8]
    Могут применяться хромоникелевый катализатор и активированный уголь последний — активный катализатор при температурах, превышающих температуры кипения азота [1, 6, 22, 24], а также катализатор, содержащий 30—35% СггОз на геле А Оз [96]. В качестве катализаторов испытаны окись никеля на глиноземе [97], сплав серебра с палладием [98], чистый рутений [99]. [c.64]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]

    Способ 2. Диффузия через палладий или сплав палладия с серебром 6 13] [c.148]

Рис. 97. Разрез электролизера для получения водорода высокой чистоты путем электролиза воды с последующей диффузией через сплав палладий —серебро. Рис. 97. Разрез электролизера для получения <a href="/info/1679702">водорода высокой чистоты</a> <a href="/info/804956">путем электролиза</a> воды с последующей <a href="/info/594030">диффузией через</a> <a href="/info/135294">сплав палладий</a> —серебро.

    Медь сплавы серебра и палладия СФМ Перкин-Эльмер 303 Отделение серебра в виде А  [c.212]

    Гальванические покрытия нашли широкое применение в различных отраслях машино- и приборостроения. Покрытия на основе вольфрама и молибдена придают изделиям, изготовленным из стали или меди, повышенную термостойкость покрытия серебром, золотом, палладием и сплавами на их основе обеспечивают электропроводность и коррозионную стойкость покрытии никелем и кобальтом повышают коррозионную стойкость, магнитные характеристики и их стабильность в процессе эксплуатации узлов и агрегатов и т. д. [c.3]

    Если еще недавно в качестве покрытий применяли латунь, бронзу, олово, свинец, то в настоящее время с успехом используют более пятидесяти сплавов. В литературе описано нанесение таких гальванических сплавов, как медь — никель, медь — кадмий, медь — олово, олово - висмут, серебро - сурьма, серебро — медь, серебро - палладий, никель - железо, никель - хром — железо, золота - серебро, золото — палладий, золото - кобальт и др. [c.3]

    Замена серебра сплавами серебро --сурьма, серебро - палладий, серебро - [c.174]

    Гидрирование этилена в этан водородом, диффундирующим через сплав палладия с серебром, имело место только в первом опыте на свежей, поверхности кат изатора. В последующих опытах гидрирование этилена не наблюдалось,то есть показана высокая селективность превращения ацетилена в этилен при подаче водорода через мембранный катализатор. [c.212]

    Начнем со случая, когда компоненты А1 и дают твердые сплавы любого состава к ним относятся, например, твердые сплавы меди и никеля, серебра и палладия, хлористого рубидия и хлористого калия, золота и меди и т. д. Обозначим через Ф и Ф" соответственно жидкий и твердый сплавы. Считая давление постоянным и откладывая по оси абсцисс составы (весовые или мольные доли) [c.433]

    Особо следует указать на попытки использовать для процессов дегидрирования углеводородов мембранные катализаторы, селективно проницаемые для водорода. В частности, запатентован сплав палладия с 25% серебра в качестве контакта де- [c.170]

    Сплав серебра с палладием—барий, окись бария (Ag+50% Pd—Ва/ВаО) [c.89]

    В случае металлического серебра электронные орбиты Ы заполнены целиком, а орбиты 55 — наполовину. Однако палладий по сравнению с серебром имеет одним 4й-электроном меньше, а один электрон на орбите 5в частично принадлежит орбите 4 . Согласно теории металлов Паулинга -оболочка в палладии заполнена не полностью и около 0,5й-орбит совсем не заполнено. Следовательно, при добавлении палладия к серебру получается сплав, обедненный -электронами. Вместе с тем при добавлении серебра к палладию незаполненность -орбиты уменьшается. [c.338]

    Чистые металлы, в том числе и лалладий, для изготовления мембран не используют по ряду технологических требований, прежде всего механической прочности и термической стойкости в газовой среде. Обычно мембранную матрицу создают из сплавов палладия с серебром, никелем, другими металлами при этом свойства сплава должны обеспечить высокую проницаемость по водороду и удовлетворительные физико-меканические характеристики. В табл. 3.12 приведены некоторые характеристики палладия и ряда сплавов на его основе. На рис. 3.16 представлены экспериментальные данные по проницаемости и диффузии водорода в сплавах палладия с серебром [8]. [c.118]

    Предварительная обработка водородом, а затем бутеном-1 при 603 К поверхности мембранного катализатора в виде пробирки из сплава палладия с 23% (масс.) серебра увеличивает -селективность дегидрирования бутана в бутен-1 при выведении водорода через мембранный катализатор [55]. Этот эффект матрицы проявляется также при дегидрировании бутана преимущественно в цис-бутен-2 и в образовании последнего из транс-бутена-2. [c.107]

    Реакции с выделением водорода, в том числе дегидрирование и дегидроциклизацию, на обычных катализаторах ведут с разбавлением исходного вещества или при пониженном давлении, чтобы увеличить степень превращения. Другим способом является удаление образующегося водорода через мембраны, в качестве которых были предложены тонкостенные трубки из платины или палладия [92], из сплава палладия с 25% (масс.) серебра [93]. На том же сплаве, как на мембранном катализа- [c.116]

    Дегидрирование алканов было предложено [114] сопрягать с окислением водорода, продиффундировавшего через мембрану из палладия или палладиевого сплава. Из этана под давлением 8,7-10 Па при 725 К на внутренних стенках трубки из сплава палладия с 25% (масс.) серебра, вокруг которой находилась смесь азота с 0,7% (об.) кислорода при давлении 7-10 Па, было получено до 0,7% (об.) этилена. [c.123]

    Добавки к серебру кадмия, цинка, олова и сурьмы в некоторой степени увеличивают его сопротивляемость потускнению. Хорошо ведут себя сплавы серебра с палладием. При содержании 40% и выше палладия эти сплавы не тускнеют. [c.308]

    Мембраны. Первые инженерные разработки по извлечению водорода с помощью металлических мембран на основе сплзеов палладия начаты 15—20 лет назад. Процесс выделения водорода предлагали проводить при температурах от 673 до 900 К в одну 19] или две ступени [10, II]. Степень регенерации водорода достигает 90% (одноступенчатое разделение при давлении исходного газа 15 МПа и давлении пермеата 0,2—0,3 МПа) и 98,5% при двухстадийном процессе (давление в напорном канале до 45 МПа, давление пермеата I ступени — 3—7 МПа, II ступени — атмосферное). Одно из достоинств металлических мембран — возможность получения водорода, практически не содержащего примесей. Так, применение мембран на основе сплава палладия с серебром в установках каскадного типа английской фирмы Джонсон Маттей Металс [12] позволило получить пермеат, содержащий 99,99995% (о б.) Иг- Отметим, что для. .этого необходимо, чтобы концентрация водорода в исходной смеси была не менее 99% (об.) Н2. Процесс проводится при температуре 550— 600 К под давлением х2, МПа. Производительность установки от 14 до 56 м ч высококонцентрированного водорода. Однако в промышленности металлические мембраны на основе палладия и его сплавов используются редко, в основном из-за дефицитности и высокой стоимости мембран, необратимого отравления палладия, необходимости поддержания высоких температ ур. [c.272]


    Чистый палладий не выдерживает давления, он растрескивается и разрушается в среде водорода, поэтому проведено большое числл исследований [27] по подбору сплава палладия, с другими металлами. В настоящее время имеются сплавы с более высокой прочностью, стойкие в среде водорода и при наличии таких примесей как СО, СОа, Н3О и углеводороды С —Сд, причем проницаемость водорода через сплавы палладия выше, чем через чистый палладий. Однако такие сплавы неработоспособны при наличии в газе сернистых соединений. Хорошую проницаемость и высокую стойкость показали сплав палладия с серебром и никелем (85% Р<1, 10% А ,. 5% N1), сплав палладия с серебром, иридием и платиной (66% Р(1, 31% Ag, 3% 1г, 0,2% Р1). Имеется предложение [28] с целью удешевления сплава заменить серебро медью. [c.55]

    Чем тоньше пленка палладия, тем больше водорода может чере нее пройти и в то же время меньше средств затрачивается на сооружение аппарата с использованием этого дорогого металла. Так, па данным [33], изготовляют диски из пористой керамики и на них наносят глазурь из 91% Р(1 или сплава палладия с серебром и, 9% обычной керамической глазури с последующим обжигом. В электронном приборостроении, например, разработано много приемов нанесе- [c.55]

    Эффективный метод очистки водорода от примесей, в частности от азота и пнертных газов, основан на диффузии его через раскаленную пластинку из металлического палладия или из сплавов палладия с золотом или серебром. Схематично установка для очистки газа этим методом представлена на рис. 15. Водород, очшцвНЕЫЙ от примеси As и Sb щелочным раствором КМпО , вводят в Палладиевую ампулу 7, расположенную в кварцевой трубке 3 в обогреваемую электропечью 2. Кварцевую трубку предварительно тщательно вакуумируют. Через стенку палладиевой ампулы в трубку диффундирует чистейший водород, содержащий не более 10"7% азота и кислорода. Удобно пользоваться для термодиффузионноы очисткл водорода специальным аппаратом , производительностью 35 л/ч. [c.87]

    Заменой палладия в промышленности служат, главным образом, его сплавы с никелем, иобальтом, марганцем, сл рьмой, серебром, золотом, повышающие износостойкость с сохранением низкого переходного сопротивления, с висмутом, оловом, повышающие способность покрытий к пайке в течение длительного времени с платиной, повышающие химическую стойкость покрытий У большинства сплавов палладия значительно уменьшается способиость наводороживания и поглощении различных газов [13 20, 31, 47]. [c.139]

    Для определения галлия в почвах пробы прокаливают при 450° С для удаления органических веществ. Остаток тщательно смешивают с графитовым порошком, содержащим серебро и палладий (внутренний стандарт), помещают образец в графитовый катод и возбуждают спектр в дуге постоянного тока [663, 1013] Остаток после прокаливания можно сплавить с НагСОз и после растворения плава в НС1 и удаления S1O2 определить галлий в растворе, используя палладий и германий в качестве внутреннего стандарта [544] [c.190]

    Пытаясь использовать для объяснения адсорбционных или каталитических свойств поверхности сплавов теорию ансамблей, необходимо сочетать данные о концентрации ансамблей (пропорциональной вероятности появления ансамбля) и о хемосорб-ционных свойствах различных типов ансамблей. Последнее, однако, известно лишь в общих чертах. Дауден [35] пытается объяснить зависимость теплот адсорбции водорода для сплавов палладий—серебро, принимая, что энергия связи атомов водорода в различных ансамблях определяется критерием, связанным с заполнением -зон. В итоге это приводит в лучшем случае к грубому полуколичественному описанию основных экспериментальных данных. [c.30]

    Некоторые возможности метода иллюстрирует исследование адсорбции окиси углерода на катализаторах Рс1—Ag/5i02 [148]. На нанесенном палладии и нанесенном сплаве палладия с серебром наблюдались три полосы поглощения окиси углерода при 4,85 мкм (2060 см ) 5,10 мкм (1960 см ) и 5,21 мкм (1920 см ). Полоса при 4,85 мкм, приписанная линейной форме адсорбированной окиси углерода, на палладии относительно слаба, а на биметаллических катализаторах становится преобладающей. Две другие полосы, приписанные мостиковой форме окиси углерода, очень слабы в спектрах биметаллических катализаторов. Объясняется такая зависимость следующим образом два рассматриваемых металла, как и можно было ожидать, образуют сплав. В результате с разбавлением палладия и соответствующим увеличением содержания на поверхности серебра доля поверхностных атомов палладия в виде соседних пар (мостиковая форма окиси углерода) падает значительно быстрее, чем снижается сама концентрация палладия на поверхности (линейная форма окиси углерода). Очевидно, что это существенно отличается от того случая, при котором частицы сплава не образуются. [c.443]

    Теплота хемосорбции кислорода на многих металлах очень велика (табл. 14). Кроме того, при ее определении разные исследователи получили сильно отличающиеся величины некоторые примеры, подтверждающие это, приведены в работе [67], где показано, что максимальные теплоты хемосорбции на титане, тантале, алюминии, ниобии, вольфраме, хроме, молибдене, марганце, железе, никеле и кобальте близки к теплотам образования массивных окислов этих металлов и меняются совершенно линейно с атомным радиусом металла. Теплоты хемосорбцни на родии, палладии и платине почти вдвое превышают теплоты образования стабильных окислов и также обнаруживают линейную зависимость от атомных радиусов. Бортнер и Парравано [72] исследовали теплоты хемосорбции кислорода на серебре и палладии и на их сплавах они нашли, что теплоты хемосорбции на серебре значительно превышают теплоты образования [c.206]

    При нанесении платины или палладия на активированный уголь гидрирование органических соединений, в том числе нитросоединений, протекает почти при обратимом водородном потенциале. Это свидетельствует или о значительной концентрации водорода в порах угля, или о преимущественной адсорбции непредельного соединения на поверхности угля с освобождением поверхности платины (или палладия) для преимущественной адсорбции водорода. Последнее предположение кажется нам более вероятным. Подобное же явление встретилось нам при гидрировании диметилацетиленилкарбинола на сплавах палладия с серебром. Скорость реакции на сплавах состава Рё Ag=2 1 и 1 1 обратно пропорциональна концентрации карбинола в растворе, падение потенциала довольно значительно и достигает 200 —250 мв. Таким образом, ацетиленилкарбинол в значительной мере вытесняет водород с поверхности. При увеличении содержания серебра в сплаве до отношения Рс1 Ag, равного 1 2, картина несколько меняется скорость реакции [c.176]

    Шваб и Госснер [114] изучали окисление окиси углерода (1) на серебре, (2) на палладии и (3) на сплавах серебра и палладия. Энергии активации определялись динамическим методом, а кинетические данные были получены в статических условиях. [c.337]

    Для выяснения вопроса о том, можно ли путем подачи атомного водорода придать непереходному металлу каталитическую активность в отношении гидрирования, сравнимую с активностью переходных металлов, в работе [47] изучали гидрирование циклогексена в статических условиях на золоченой внешней поверхности пробирки из сплава палладия с 23% серебра, внутрь которой подавали водород. При таких условиях реакция шла в 40 раз быстрее, чем при контакте смеси паров циклогексена и водорода в соотношении 1 2,6 с золоченой стороной пробирки, через стенки которой не поступал водород. Если же водород удаляли с золоченой поверхности, откачивая объем внутри пробирки, то образовавшийся циклогексан при 473 К превращался в циклогексен. Для последней реакции, как и для гидрирования циклогексена, оказалось необходимым присутствие хемосорбированного водорода на поверхности катализатора. При температуре 473 К и подаче водорода через катализатор часть циклогексена превращалась в бензол. Золото было выбрано, потому что оно является плохим катализатором гидрирования циклогексена при температурах от 423 до 623 К вследствие малой концентрации адсорбированных атомов водорода [48] и потому что предварительная адсорбция водорода ускоряет дей-тероводородный обмен на золоте [49]. [c.106]

    Перенос водорода через катализатор оказывает существенное влияние и на реакции изомеризации, несмотря на то, что водород не входит в стехиометрические уравнения этих реакций. Например, бутен-1 или транс-бутт-2 в течение нескольких часов не изменялись при 573 К в контакте с наружными стенками пробирки из сплава палладия с 23% (масс.) серебра, когда объем пробирки откачивали. Как только внутрь пробирки впустили водород до давления Ю Па, началась изомеризация, а после накопления водорода пошло гидрирование [53]. Прекращение подачи водорода через мембранный катализатор приводило к уменьшению скоростей этих реакций, а снижение давления водорода в зоне их протекания до 3-10 Па — к дегидрированию образовавшегося бутана в исходный углеводород и превращение в него же образовавшихся изомеров. Главным продуктом изомеризации бутена-1 был транс-бутея-2, а из него получался главным образом цис-бутен-2. Участие атомов водорода в процессах изомеризации бутенов истолковано согласно [54] тем, что к молекуле исходного углеводорода присоединяется атом Н, а возникающий радикал С4Н9 теряет атом Н не от того углеродного атома, по которому прошло присоединение водорода. [c.107]

    На том же катализаторе в виде тонкостенной трубки исследовали [99] в безградиентных условиях влияние парциальных давлений всех реагентов на скорость дегидрирования изоамиленов. Внутри трубки циркулировала смесь паров изоамилена с аргоном а вдоль ее внещпей поверхности — чистый аргон со скоростью, которая на 2 порядка превышала скорость подачи указанной смеси. Было найдено, что порядок реакции по изоамилену равен 0,5, а по изопрену —1. Повышение соотношения парциальных давлений водорода и изоамилена до единицы увеличивает, как видно из рис. 4.5, скорость дегидрирования, а дальнейшее обогащение смеси водородом подавляет реакцию [100]. Положительное влияние небольших количеств водорода на дегидрогенизацию циклогексана наблюдалось ранее на сплаве палладий — серебро [50] и на палладии [94]. В отличие от данных [50] о прекращении дегидрирования циклогексана в отсутствие водорода дегидрогенизация изоамиленов в опытах [100] происходила и без водорода. С учетом всех этих результатов была разработана [101] кинетическая модель дегидрогенизации изоамиленов на палладий-никелевом мембранном катализаторе, через который удаляется образующийся водород. Была принята следующая схема стадий  [c.118]


Смотреть страницы где упоминается термин Серебро сплаве с палладием: [c.328]    [c.91]    [c.333]    [c.156]    [c.148]    [c.148]    [c.356]    [c.10]    [c.91]    [c.273]    [c.277]    [c.108]    [c.270]    [c.433]    [c.805]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2025 chem21.info Реклама на сайте