Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение изотермы адсорбции по хроматографическому пику

Рис. XX. 1. Определение изотермы адсорбции по хроматографическому пику. Рис. XX. 1. <a href="/info/301044">Определение изотермы адсорбции</a> по хроматографическому пику.

    Впервые на принципиальную возможность определения изотерм адсорбции по выходной хроматографической кривой указал Вильсон . Позднее Де Во показал, что изотерме типа I по классификации БЭТ (вогнутой по отношению к оси лавления) соответствует хроматограмма с резко очерченной передней границей и размытой задней, в то время как изотерме типа И (выпуклой к оси давлений) соответствует хроматограмма с размытой передней и резкой задней. В случае линейной изотермы пик симметричен. Возможность использования десорбционных хроматографических кривых для получения изотерм адсорбции газов была показана Викке и несколько позднее —Рогинским и Яновским изучавшими механизм проявления хроматографической полосы на составной колонке. Было пoкaзaнo что кривые распределения адсорбированного вещества (этилен, пропилен) по слою адсорбента (уголь) являются равновесными. В 1951 г. Яновским была предложена методика графической обработки семейства десорбционных кривых для построения изотерм, изобар и изостер адсорбции. Грегг и Сток для адсорбентов, принадлежащих всем пяти структурным типам по классификации БЭТ, показали возможность применения основного уравнения равновесной хроматографии для расчета изотерм адсорбции по выходной (передней или задней) хроматографической кривой. Полученные изотермы н-пентана, н-гексана, циклогексана и бензола на различных силикагелях при 25° в пределах точности эксперимента, совпадают с изотермами, снятыми весовым методом с применением электромагнитных адсорбционных весов (рис. 2). Недостатком метода Грегга и Стока является необходимость предварительного насыщения колонки парами вещества, используемого в качестве адсорбата. Указанного недостатка лишен импульсный метод определения [c.26]

    Методика определения изотермы адсорбции, подробно описанная ранее [4], сводится к экспериментальному снятию хроматографического пика гептана, импульсно вводимого в поток инертного газа-носителя (Лг,К2), проходящего через колонку, заполненную исследуемым адсорбентом (рис. 1). По построенной по уравнению (1) изотерме адсорбции рассчитывается затем поверхность по методу БЭТ. [c.84]

    Определение изотермы адсорбции по хроматографическому пику. [c.184]

    Таким образом, эти термодинамические методы (газо-хроматогра-фический и статический) определения симметричности хроматографического пика и характера изотерм адсорбции, так же как и калори- [c.30]


    Таким образом, по данным газо-жидкостной хроматографии представляется возможным рассчитывать коэффициенты активности компонентов в бесконечно разбавленных растворах. Это имеет очень важное практическое значение, поскольку эти величины весьма затруднительно определять другими методами. Нужно, однако, учитывать, что в изложенных выше рассуждениях рассматривается система газ — носитель — летучий компонент — неподвижная фаза, нанесенная на насадку, т. е. предполагается, что твердый носитель является инертным и не оказывает никакого влияния на фазовое равновесие в указанной системе. Как показывает практика, это условие не всегда выполняется. На поверхности носителя возможна адсорбция компонентов исследуемых смесей, оказывающая большое влияние на условия их равновесного распределения между газовой и неподвижной фазами. Это приводит к существенным отклонениям коэффициентов активностей летучих компонентов в бесконечно разбавленных растворах в малолетучих растворителях, найденных по данным газо-жидкостной хроматографии, от значений, определенных другими методами. Наибольшее влияние адсорбции на поверхности носителя обнаруживается при использовании для хроматографических экспериментов жидких фаз, полярность которых значительно меньше полярности исследуемых летучих веществ. Это влияние проявляется в асимметричности хроматографических пиков (появление адсорбционных хвостов ), а также в изменении удерживаемого объема с изменением величины вводимой пробы. Отмеченные явления обусловлены нелинейностью изотерм адсорбции на твердых поверхностях и обнаруживаются при использовании обычно применяемых носителей — кизельгура, огнеупорного кирпича, силикагеля, окиси алюминия, целита, пористого тефлона. [c.61]

    Строго, уравнение (3.1) справедливо только при бесконечно малой дозе адсорбата для гипотетической колонны, в которой профиль пика адсорбата не изменяется при его перемещении вдоль колонны и газ-носитель не взаимодействует с адсорбатом. Однако в общем в реальной газо-адсорбционной хроматографической колонне удерживаемый объем, найденный по максимуму или центру масс пика адсорбата при фактически вводимых его дозах, определяется, кроме константы Генри Ki,a и перепада давления в колонне, еще рядом других факторов, таких как нелинейность изотермы адсорбции, эффект сорбции (изменение скорости газовой фазы в области хроматографического пика из-за адсорбции и десорбции адсорбата), неидеальность газовой фазы, а также рядом кинетических и диффузионных факторов, связанных с динамическим характером хроматографических измерений [105, 106]. Поэтому при строгом определении Ki.a из газохроматографических данных необходимо учесть влияние всех этих факторов на Va, i или измерения Va, проводить при таких условиях, при которых влиянием этих факторов на Va, i можно пренебречь с желаемой точностью. В настоящей главе мы рассмотрим влияние этих факторов на удерживаемый объем адсорбата Va, i при условиях определения Ki, а из этого объема и оценим погрешности в значениях Ki,a. которые могут получаться из-за пренебрежения влиянием этих факторов на Va, 1. Одновременный учет влияния всех факторов на Va, i встречает значительные трудности. Поэтому мы рассмотрим влияние каждого фактора в отдельности. [c.42]

    II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авторов - описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов - - , определения количества и силы кислых центров каталитической поверхности й т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]

    Фронтальный хроматографически анализ оказался особенно подходящим для этих целей (Джеймс и Филлипс, 1954 Грегг и Сток, 1958 Шай, 1960). Однако отрицательной стороной в этом методе является необходимость работы с относительно большими количествами вещества. Кремер и сотр. (1961) описали методы определения изотерм адсорбции при помощи проявительной хроматографии, которая не имеет такого недостатка. Эти методы основаны на применении уравнения (55), которое выведено авторами другим путем, к десорбционному фронту хроматографического пика. Оказалось возможным графически выразить функцию / ( ) через величины Vизмеренные при различных концентрациях компонента. Посредством графического интегрирования этой зависимости получают изотерму адсорбции. Так как при выводе не учитывалось размывание границы, вызываемое диффузией, то необходима еще корректировка измеренных величин. Это осуществляется при предположении о том, что размывание фронта и тыла одинаковы. [c.465]


    Известны другие, более трудоемкие хроматографические методы определения изотерм адсорбции — методы фронтальной хроматографии , хроматермографии и тепловой де-сорбции . Эти методы применимы для адсорбентов и катализаторов любой пористой структуры. Сняв хроматографически изотерму адсорбции, можно рассчитать удельную поверхность катализатора. Новый экспрессный метод определения поверхности твердых тел предложен недавно Куге и Яши-кава Ч Для систем адсорбент — адсорбат, соответствующих II типу изотерм по классификации БЭТ, авторы нашли, что точке перехода от монослоя к полислоям соответствует перегиб верхней части хроматографического пика. Импульсно вводя в колонку пробы адсорбата различной величины, можно быстро определить количество адсорбата, отвечающее точке перехода на изотерме. Затем, пользуясь известными методами, можно рассчитать поверхность твердого тела. Ряд авто-ров описали хроматографические методы определения поверхностей адсорбентов и катализаторов на основе измерения удельных удерживаемых объемов. Известны хроматографические методы измерения величины активной части поверхности сложных и нанесенных катализаторов определения количества и силы кислых центров каталитической поверхности и т. д. В ряде работ - показана возможность изучения хроматографическим методом кинетики обратимой адсорбции. Однако привлекаемый для этих целей математический аппарат довольно сложен и нередко для обработки экспериментальных данных требует применения вычислительных машин. [c.29]

    Для экспериментальной оценки степени однородности поверхности адсорбентов применяются разные методы термодинамические (газохроматографический и вакуумный адсорбционный — методы -определения формы хроматографического пика и изотермы адсорбции), калориметрический (определение зависимости теплоты адсорбции от заполнения поверхности адсорбированными молекулами), различные электронно-микроскопические методы (в частности, метод декорирования), дифракция медленных электронов, спектроскопические методы, химические реакции с поверхностными соединениями, в частности, изотопный обмен [54, 97]. В соответствпп с содержанием этой книги ниже рассмотрены некоторые термодинамические методы такой оценки. [c.24]

    Однако особенно плодотворной для изучения кинетики адсорбции оказалась теория газоадсорбционной хроматографии, подробно разработанная рядом чехословацких исследователей, с использованием метода моментов, широко применяемого в статистике. Впервые метод моментов для анализа хроматографических процессов был предлон ен Туницким. Теория моментов, используемая для решения линейных задач газоадсорб-циопной хроматографии, позволяет по форме хроматографического пика учесть действие продольной диффузии в газовой фазе, радиальной диффузии внутри поры частицы катализатора и конечной скорости адсорбции молекулы внутренней поверхностью поры. Опубликованные к настоящему времени работы показали большие возможности газовой хроматографии в исследовании процессов переноса и кинетики адсорбции на катализаторах. Попытка использования этого метода для изучения кинетики хемосорбции до последнего времени встречала, однако, серьезные затруднения из-за нелинейности обычной изотермы хемосорбции даже в области сравнительно невысоких парциальных давлений адсорбата. Поэтому, строго говоря, кинетику хемосорбции нельзя описать системой линейных дифференциальных уравнений. Переход же в линейную область путем значительного снижения концентрации адсорбата может быть осложнен влиянием неоднородности поверхности. В связи с этим большой интерес представляет оригинальная изотопная методика определения скорости хемосорб-ции водорода, описанная в главе четвертой, в которой показана возможность обработки экспериментальных данных по кинетике хемосорбции в случае нелинейных изотерм с использованием аппарата теории моментов. Б дальнейшем, по-видимому, эту идею можно будет обобщить на другие системы путем применения к ним методов, близких методам описания вэ- [c.5]

    Выше был рассмотрен метод определения удельной поверхности адсорбентов и катализаторов, основанный на хроматографическом измерении изотермы адсорбции и последующем расчете по этой изотерме удельной поверхности методом БЭТ [17]. Несколько в стороне от этой группы работ стоит уже рассматривавшееся выше исследование Куге и Иошикавы [23], показавших возможность вычисления поверхности твердого тела по излому на хроматографическом пике, соответствующему переходу от адсорбции преимущественно монослоем к полимолекулярной адсорбции. Метод этот, хотя и позволяет по одному измерению определить поверхность, однако применим только для случаев, когда изотерма адсорбции [c.126]

    В последующей работе [43 показано, что непосредственному количественному определению вкладов различных составляющих удерживания на основе данных по удерживанию должны предшествовать исследования по воспроизводимости величин удерживаемых объемов. Так, важным методическим условием измерения адсорбционных характеристик в ГЖХ является исключение влияния криволинейности изотерм адсорбции сорбата на межфазных поверхностях. Поскольку изотермы адсорбции выпуклы, то. с увеличением концентрации роль адсорбционных явлений уменьшается. Показано., что пики н-пропанола являются симметричными лишь в области малых концентраций ( 5-10 об.%), где изотермы адсорбции линейны, и в области больших [Концентраций (я 6-10 — 3-10 об.%), где роль адсорбции мала. Попутно отм1етим,. что часто высказываемое мнение о том, что только асимметричность хроматографических зон является обязательным проявлением адсорбционных эффектов в. газо-жидкостной хроматографии, неверно. В ГЖХ известны примеры хроматографических систем, в которых зоны, практически симметричны, несмотря на существенный вклад адсорбции в удерживание (см., например, [35, 101]). В этих системах изотермы адсорбции хроматографируемых веществ линейны и выражаются уравнением Генри. Все измерения в работе [43] проводили при концентрации н-пропанола —10" об.% (детектор пламенно-ионизационный).  [c.30]

    Динамический метод заключается в пропускании через слой адсорбента тока инертного газа, содержащего пары адсорбирующегося вещества, и измерёйии нарастания его концентрации в газе за слоем адсорбента. Одним из вариантов динамического метода определения величины адсорбции и удельной поверхности является проявительный метод, основанный на использовании уравнений нелинейной равновесной хроматографии. Метод позволяет построить изотерму адсорбции по форме выходной кривой хроматографического пика. [c.243]

    Газохроматографический метод определения площади поверхности был разработан Нельсеном и Эггертсеном [55]. В этом методе исследуемый образец помещают в трубку, установленную вместо хроматографической колонки. Через эту трубку пропускают ноток смеси азота с гелием известного состава и анализируют газ, выходящий из трубки, с помощью катарометра. Когда трубку погружают в жидкий азот, происходит адсорбция азота, и на ленте самописца появляется отрицательный пик. При установлении равновесия перо самописца возвращается в исходное положение. После извлечения трубки из жидкого азота происходит десорбция азота, и на ленте появляется положительный ник такой же величины, что и ранее полученный отрицательный пик. Повторяя эту процедуру для различных составов газа-носителя, можно получить полную адсорбцнонно-десорбционную изотерму. По этой изотерме с помощью стандартной методики расчета БЭТ (т. е. методом Бру-науэра — Эммета — Теллера) можно определить удельную площадь новерхности исследуемого образца. Теоретические и практические стороны этого метода, а также его различные модификации достаточно хорошо описаны в литературе [56—58]. Применения этого метода не ограничены только изучением адсорбции азота. [c.62]


Смотреть страницы где упоминается термин Определение изотермы адсорбции по хроматографическому пику: [c.36]    [c.198]   
Смотреть главы в:

Справочник по газовой хроматографии -> Определение изотермы адсорбции по хроматографическому пику




ПОИСК





Смотрите так же термины и статьи:

Адсорбции изотерма

Адсорбция изотермы Изотермы адсорбции

Адсорбция определение

Изотермы

Изотермы и изотерма адсорбции

Изотермы изотермы



© 2025 chem21.info Реклама на сайте