Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические бромирование

    Оказалось, что в таких реакциях электрофильного замещения, как нитрование бензола, толуола, нитробензола, нитротолуола, нафталина и других ароматических соединений, а также бромирование бромбензола, изотопный эффект практически отсутствует. Это позволяет однозначно считать, что названные реакции протекают по двухстадийному механизму и, следовательно, присоединение электрофильной частицы и отщепление протона происходят неодновременно. При этом лимитирующей стадией всего процесса является образование карбокатиона, когда еще не затрагивается связь Аг—Н. [c.315]


    Опыт 104. Бромирование ароматических углеводородов. [c.106]

    Аналогичные реакции бромирования лежат в основе определения многих других органических соединений ароматического ряда, например салициловой кислоты, крезолов, динитрофенолов, резорцина, р-наф-тола, анилина, антипирина и др. [c.431]

    Сравнительная трудность проведения этого процесса означает, что требуется не только какой-либо внешний агент (дополнительная молекула галоида или растворитель) для помощи в достижении переходного состояния, но и значительное участие ароматического кольца п его заместителей. Следовательно, реакция бромирования и в меньшей степени реакция хлорирования являются хорошо выраженными избирательными реакциями, они дают почти исключительно о-п-ориентацию в толуоле со слабо-идущей атакой в ж-положение. Поэтому галоидирование является весьма чувствительной реакцией для изучения влияния заместителей на активность ароматического кольца. Подобные данные [272] суммированы в табл. 13. [c.447]

    Опыт 105. Бромирование ароматических углеводородов с катализатором [c.107]

    И. Бромирование ароматических соединений характеризуется высокой селективностью. Так, фактор парциальной скорости (/пара) для бромирования толуола составляет 2,5-10 , а для нитрования — лишь 46. С чем связана высокая селективность реакции бромирования и как будут различаться по значению реакционные константы  [c.106]

    При бромировании ароматических соединений в качестве катализаторов используют галогениды металлов, иод, а в случае реакционноспособных веществ (фенолов, аминов)—воду (водный раствор брома). Рассмотрите механизм каталитического действия указанных выше веществ. [c.153]

    Иод не реагирует непосредственно с простыми ароматическими углеводородами, и иодирование такого типа производят обычно обработкой углеводорода иодом в присутствии таких окислителей, как азотная кислота [98]. Общепризнано представление, что функцией азотной кислоты является окисление иодистого водорода, образующегося в реакции, смещая таким путем неблагоприятное равновесие. Однако с точки зрения современных результатов но реакциям хлорирования и бромирования возможно, что азотная кислота образует ион иодония 1" , а эффективность процесса действительно зависит от высокой активности.этого промежуточного вещества [104]. [c.448]

    Оптически активные трис-ацетилацетонаты хрома, кобальта, родия вступают в реакции электрофильного замещения хлорирования, бромирования, нитрования. В этих реакциях хелатное кольцо ведет себя как ароматическая система. Оптическая активность в этих превращениях сохраняется. [c.672]


    Из ЭТИХ данных следует, что тепловой эффект реакции с фтором значительно выше энергии разрыва ароматической С—С-связи, равной 58,6 ккал поэтому при фторировании происходит распад молекул. Теперь становится понятным, почему при реакции с фтором так легко разрушается ароматическое кольцо. Ароматические соединения не проявляют по отношению к фтору ароматических свойств. Фтор не только присоединяется к С— С-связям ароматического кольца, но и образует при этом продукты расщепления и конденсации. При хлорировании и бромировании тепловые эффекты реакций значительно меньше—поэтому разрыв кольца не происходит, и реакции (а) и (б) идут гладко. Трудность иодирования объясняется эндотермичностью этой реакции. [c.776]

    В заключение следует отметить, что пиридин бромируется в исключительно жестких условиях, причем заместитель направляется в р-положение. Это можно объяснить следующим образом. Несмотря на то что реакцию бромирования в отличие от реакций нитрования и сульфирования проводят в отсутствие протонных кислот и реакции электрофильного замещения не предшествует протонирование атома азота и образование соли пиридиния с дезактивированным ароматическим кольцом, все равно и в данном случае наблюдается аналогичная дезактивация. [c.379]

    В спектре полученного после бромирования диметоксибензальдегида вещества сохраняется сигнал альдегидного протона 6-9,5 м. д., синглет и сигналы протонов двух неэквивалентных метильных групп. В области резонанса протонов ароматического ядра имеется четыре сигнала типичной системы АВ с центром 7,2 м. д. Такой спектр мог соответствовать только 2-бром-3,4-диметоксибензальдегиду. [c.299]

    Лолучение и физические свойства. Взаимодействие ароматических сульфохлоридов с фенолом обычно приводит к арилсульфо-натам. Нормальный ход этой реакции, а также аномальное ее течение с замещением гидроксильной группы на атом галоида подробно описаны в разделе, посвященном сульфо хлоридам (стр. 337). Так как арилсульфонаты исключительно трудно гидролизуются по сравнению с другими эфирами, многие из известных соединений этого типа получены путем нитрования, бромирования и окисления эфиров более простого строения. [c.372]

    Галогенирование. Из реакций галогенирования (замещения атома водорода в ароматическом ядре на атом галогена) препаративное значение имеют хлорирование и бромирование. [c.372]

    При хлорировании и бромировании ароматических соединений в качестве активатора используют также иод, действие которого объясняют следующим образом  [c.373]

    Реакции бромирования некоторых ароматических соединений и условия их проведения приведены ниже (ароматические субстраты расположены в порядке уменьшения их реакционной способности)  [c.374]

    Обычно нри электрофильном бромировании ароматических соединении нб наблюдается кинетического изотопного эффекта, однако при бромировании 1,3,5-трис(трег-бутил)бензола он оказался равным 3,2  [c.106]

    В промышленном синтезе ароматических соединений электрофильное галогенирование в кольцо находит обширное применение. Оно используется не только как метод химической переработки ароматического сырья, но и на более поздних этапах получения промежуточных продуктов и красителей. В крупных масштабах используется только хлорирование бромирование применяется значительно рел<е, а иодирование — лишь в отдельных случаях, [c.102]

    Сопоставление скорости бромирования бензола, толуола и других ароматических соединений со стабильностью соответствующих о-комплексов указывает на симбатность между относительными скоростями образования о-комплексов и скоростями бромирования. Что можно сказать на основании этих данных о строении активированного комплекса  [c.105]

    После удаления непредельных углеводородов в исследуемых фракциях определяют содержание ароматических углеводородов обычным анилиновым способом. Для этого бромированные фракции обрабатывают серной кислотой для удаления ароматических углеводородов,. Последнюю операцию проводят следующим образом. Исследуемую фракцию энергично взбалтывают 15 мин. с двумя объемами 98%-ной серной кислоты аосле этого ее еще два раза обрабатывают по 15 мип. свежими порциями кислоты каждый раз по одному объему. Полученный продукт промывают водой, щелочью, снова водой до нейтральной реакции и высушивают над прокаленным хлористым кальцием. [c.509]

    В настоящее время существует значительное количество данных, говорящих в пользу того, что при нитровании и бромировании ароматических соединений не наблюдается эффекта действия изотопов. Например, Мелендер показал, что при нитровании и бромировании замещение трития в кольце происходит практически с той же скоростью, как и замещение водорода [220]. Продукты, образующиеся при нитровании монодейтеро-бензола, также говорят об одинаковом замещении водорода и дейтерия [190]. Наконец было показано, что скорости нитрования нитробензола и пентадейтеронитробензола идентичны [36]. [c.408]

    Записывая структуры подобного типа, принято опускать в них атомы Н, присоединенные к циклическим атомам углерода каждая вершина шестиугольного кольца обозначает атом С с присоединенным к нему атомом Н.) В первой из указанных выше реакций серная кислота помогает протеканию реакции, превращая НЫОз в N0 , частицу, которая атакует бензольное кольцо. Кроме того, серная кислота играет роль поглотителя влаги, удаляя из реакционной системы образующуюся в качестве продукта воду. Соединения РеВгз и А1С1з во второй и третьей реакциях являются катализаторами. Чтобы уяснить их роль, необходимо познакомиться с механизмом реакции. Ароматические циклы особенно восприимчивы к атаке элек-трофильными группами, или льюисовыми кислотами, которые имеют большое сродство к электронным парам. В реакции бромирования бензола Вг, не является электрофильным агентом, в отсутствие катализатора РеВгз эта реакция не осуществляется даже за достаточно большое время. Однако молекула РеВгз способна присоединить еще один ион Вг , акцептируя его электронную пару, и поэтому она разрывает молекулу Вг2 на ионы Вг и Вг +  [c.302]


    Заболевание хлоракне было признано в качестве профессионального с 50-х годов нашего столетия. Согласно работам [Whiteside, 1978 Hay, 1982], хлоракне впервые было отмечено у работников хлорной промышленности в Германии, и считалось, что оно вызывается хлором. Впоследствии было выяснено, что причиной хлоракне служат хлорированные (или бромированные) ароматические соединения. По мнению автора данной книги, случаи хлоракне у работников хлорной промышленности вызывались органическими смолами, применяемыми в то время в качестве герметика для электродов. В Великобритании хлоракне было признано профессиональным заболеванием в 1948 г. [c.407]

    Наибольшее значение имеет синтез алифатических хлорпроизводных, в мепк шей степени используются хлорирование ароматических соединений, процессы фторирования, бромирования и иодирования. [c.389]

    Хлорирование (бромирование) ароматических углеводородов протекает по ионному механизму с участием галоген-катиопа  [c.390]

    Однако при высокой температуре возможно галогенирование ароматических соединений и по радикальному механизму. Так, бромированне бромбензола при 450—500 °С ведет к преимущественному образованию л1-дибромбензола, тогда как обычно в соответствии с правилами ориентации образуется смесь о- и п-дибром-бензолов. Разница в механизмах галогенирования соединеиий жирного и ароматического рядов ведет к тому, что в присутствии Fe lj галогенирование жирно-ароматических соединений можно направить в ядро, тогда как УФ-облучение и повышенная температура способствуют замещению водородного атома в боковых цепях. [c.390]

    Галогенирование асфальтенов чаще всего осуществляется газообразным пли связанным хлором. Бромирование и иодирование асфальтенов проводится значительно реже. Галогенироваине асфальтенов ведут в растворе четыреххлорпстого углерода. Хлорирование раствора асфальтенов протекает уже при комнатной температуре, причем за первые полчаса поглощается до 37% хлора. Соотношения Н С в ис.ходном продукте и (Н- -С1) С в конечном продукте остаются постоянными, что указывает на замещение хлором водорода сначала в алкильных заместителях, а затем, через 4—8 ч, и в ароматических фрагментах асфальтенов. [c.215]

    Для ориентировочного суждения об углеводородном составе крекинг-бензина в каждой фракции (кроме фракции до 60°) определяют йодное число и примерное суммарное содержание ароматических и непредельных углеводородов по способу Каттвинкеля. Полученные фракции разбивают на две части одна часть идет для более точного определения суммарного количества непредельных и ароматических углеводородов по снособу Тиличеева и Масиной, а другая на бромирование для удаления ненредельных с целью последующего определения ароматических углеводородов. Во фракции до 60° содержание ароматических углеводородов не определяют, так как они там практически не содержатся. [c.508]

    Хлорирование ароматических сульфокислот. В зависимости от условий опыта и от связанных с ароматическим ядром групп прв галопдировапии сульфокислот могут иметь место различные реакции. Хлорирование сульфокислот исследовано не так подробно, как бромирование, рассматриваемое в следующем разделе. [c.210]

    Бромирование сульфокислот. Бромированию подвергалось весьма большое число сульфокислот, практически во всех случаях реакщш проводилась в водном растворе. В зависимости от связанных с ароматическим ядром групп получается или бромсульфокислота, или арилбромид (отщепление сульфогруппы), или смесь обоих соединений. Наличие гидроксила или аминогруппы в орто- или тгара-положении к сульфогруппе благоприятствует замещению последней на бром. Легко идет замещение и в полиал-килбензолсульфокислотах. [c.214]

    Разумеется, главный критерий ценности синтетического метода — зто характер достигаемого с его помощью превращения. Это превращение должно быть целенаправ-лено и, как правило, вести от более доступных соединений к ыепее доступным. Например, ароматические углеводороды — в целом доступные соединения, получаемые из угля и нефти, а кетоны и бромиды — малодоступные. Поэтому метод синтеза ароматических кетонов из углеводородов, основанный на реакции Фриделя—Крафтса, или синтез бромидов с помощью ионного бромирования в ядро имеют большую ценность и находят Н]ирокое применение. [c.57]

    Наиболее простой пример такого подхода мы рассматривали в случае бромирования толуола (см. раздел 2.1). Действительно, в толуоле имеются две функциональные группы, способные легко реагировать с бромом метильная группа и ароматическое ядро. Тем пе мепее, как мы видели, удается направить бромированио селективно в ядро или в метильную группу путем правильиого выбора типа реакции при ионном бромировании — в ядро, при радикальном — в боковую цепь. Другим примером является селективное присоединение водорода по двойным связям ароматической системы толуола при каталитическом гидрировании — насыщение всех трех двойных связей, при восстановлении по Бёрчу — селективное восстановление одной из них. [c.128]

    Видно, что при этом образуются, главным образом, пара- и орто-шомеры. А нитробензол при таком бромировании почта нацело превращается в А1ета-изомер, т.е. нитрю-группа в ароматическом кольце оказывает л(ета-ориентирующее влияние на вступающий э.лектрофил  [c.169]

    Дибензо-и-диоксины (I) - это большая rpyima гетероциклических полихлорированных соединеннй, основу которых составляют два ароматических кольца, связанных между собой двумя кислородными мостиками, тогда как к дибензофуранам (III) относят молекулы с одним кислородным мостиком. Бифенилы (II) - два ароматических кольца, связанных обычной химической связью. Бромированные аналоги указанных соединений встречаются реже и менее изучены в токсикологическом плане, хотя для некоторых из них данные по токсичности имеют столь же высокие значения, что и для хлорированных производных [c.70]

    В техническом анализе количественное определение производных бензола проводят методом бромнрования для определения непредельных ароматических соединений, фенолов, ароматических аминов и методом диазотирования, когда первичные ароматические амины с азотной кислотой дают диазосоединения. В заводском контроле чаще используют метод бромирования. [c.353]

    Бром реагирует с флуоресцеином с образованием красного жрасителя эозина. В этом случае происходит бромирование ароматического ядра  [c.16]

    Какие нз приведенных ниже реагентов можно исгользовать для реакций бромирования ароматических соединений в ядро Расположите их в ряд в порядке [c.153]

    Хлорирование и бромирование ароматических соединений по механизму 5 -2ар протекает в присутствии катализаторов, которыми могут быть РеС1з, AI I3, Sb lr, и ряд других соединений. Например, хлорирование бензола может быть представлено следующей схемой  [c.174]

    Природа атакующей частицы здесь менее ясна, чем при бромировании и хлорировании. Сам иод слишком инертен, и лишь в реакциях с активными субстратами, такими, как фенолы, получены веские доказательства, что атакует молекулярный иод [184]. Есть указания на то, что при катализе перуксус-ной кислотой атаковать может A OI, а в присутствии катализаторов 80з или НЮз — это I3+ [186]. Косвенный метод ароматического иодирования см. реакцию 12-28. [c.347]

    Хлорирование или бромирование в присутствии катализатора, например AI I3, РеС1з, I2. Иод не реагирует подобным образом, но иодирование ароматических соединений можно провести, используя монохлорид иода I I. [c.51]


Смотреть страницы где упоминается термин Ароматические бромирование: [c.90]    [c.470]    [c.52]    [c.518]    [c.345]    [c.105]   
Препаративная органическая химия (1959) -- [ c.174 , c.176 ]

Препаративная органическая химия (1959) -- [ c.174 , c.176 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.178 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Бромирование



© 2025 chem21.info Реклама на сайте