Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические магния

    Флоризил — синтетический силикат магния. Считают, что он эффективен в аналитической работе по выделению азотистых соединений из дистиллятов сланцевой смолы. Флоризил, по-видимому, неэффективен для разделения различных типов углеводородов [25]. [c.266]

    Магний, как уже отмечалось, проявляет некоторое сходство о литием. Для Mg и Ы характерны нестабильность пероксидов, легкость получе иия нитридов, образование кристаллогидратов хорошо растворимых солей. Катионы Ы+ и M.g одинаково ведут себя во многих аналитических реакциях. 6 сходстве свойств соединений магния и лития свидетельствует зависимость, приведенная на рис. 3.7. Как следует из рис. 3.7, для каждого однотипного соединения [c.321]


    Здесь в числителях указано содержание катионов и анионов в мг л по данным анализа, а в знаменателях — их эквивалентные веса (см. приложение). Если в воде, для которой получен анализ, прочие катионы и анионы, не включенные в эту формулу, присутствуют лишь в ничтожных количествах (что имеет место для большинства природных вод), то правая и левая части ее должны быть примерно равны между собой. Расхождение между суммами миллиграмм-эквивалентов на л катионов и анионов не должно превосходить 5%. Проверка правильности анализа по данной формуле может производиться только в тех случаях, когда содержание катиона натрия определено аналитическим путем, а не по разности между суммой анионов и. суммой кальция и магния, как это часто делают в лабораториях. [c.28]

    Спектральное определение меди в растворе проводят, фото-метрируя аналитическую пару линий Си 515,32 — Mg 516,73 нм. Эти линии гомологичны, так как медь и магний имеют близкие потенциалы ионизации, соответственно 7,72 эВ и 7,64 эВ, вы- [c.23]

    Объяснение. Растворы различных кислот одинаковой аналитической концентрации различаются по степени электролитической диссоциации, т. е. по числу присутствующих в них ионов водорода. Чем больше в растворе кислоты содержится ионов, тем большей электропроводностью обладает этот раствор. С другой стороны, интенсивность выделения пузырьков газообразного водорода при взаимодействии раствора кислоты с магнием характеризует силу кислоты [c.70]

    Двухзарядные ионы магния проявляют в некоторых отношениях значительное сходство с катионами щелочно-земельных металлов — кальцием, стронцием и барием, но больше тяготеют к катионам первой аналитической группы. Особенно большое сходство проявляют ионы и Li+, обладающие практически весьма близкими ионными радиусами — 0,074 и 0,068 нм. [c.235]

    Электрохимические процессы широко используются в современной технике, в аналитической химии, в научных исследованиях. Так, электрохимическим методом в промышленности получают металлы (алюминий, цинк, никель, магний, натрий, литий, бериллий и др.), хлор, гидроксид натрия, водород, кислород, ряд органических соединений, рафинируют металлы (медь, алюминий). Электрохимические методы широко используют для нанесения металлических покрытий, для полирования, фрезерования и сверления металлов. С каждым днем все больше применяются химические источники электрической энергии — гальванические элементы и аккумуляторы — в технике и научных лабораториях. В аналитической практике и научных исследованиях широко применяют такие электрохимические методы исследования, как потенциометрический, полярографический и т. п. Электрохимические системы в виде так называемых хемотронных приборов с успехом применяют в электронике и вычислительной технике. [c.313]


    Внутрикомплексные соединения магния, одновременно содержащие связи Мд—N и Мд—О, например соединения с 8-оксихино-лином и его производными, относятся к одним из наиболее важных комплексов этого элемента и служат для аналитического определения его и многих других элементов (табл. 51). [c.196]

    Помимо описанных ранее (книги 1 и 2 Основы аналитической химии ) методов определения элементов из очень разбавленных растворов (1 10 ) можно привести в качестве нового примера предложенный Т. Г. Акимовой и О. П. Елисеевой метод концентрирования кюрия, количественно соосаждаемого в виде комплексных соединений с осадками, образованными реагентами арсеназо I, И и III в комбинации с кристаллическим фиолетовым. Этим методом можно отделять кюрий от Ю -кратных количеств магния. [c.23]

    Четвертая аналитическая группа катионов (гидроксидная группа) Mg +, Мп , Fe Fe Bi % Sb , Sb . К четвертой аналитической группе относят катионы магния, марганца, железа (И и III), висмута, сурьмы (III и V). Их групповым реактивом является водный раствор аммиака, который осаждает эти катионы в виде гидроксидов, нерастворимых в избытке реактива — раствора аммиака. [c.105]

    Образующиеся при электролизе вещества либо выделяются на электродах, либо вступают в химическое взаимодействие с растворителем или растворенным веществом. Электролиз растворов и рас-сплавов широко применяется в промышленности для получения щелочей, солей, различных органических веществ, магния, алюминия, для нанесения гальванических покрытий и т. д. Таким путем удается получить более чистые (по сравнению с химическими методами синтеза) и сравнительно дешевые вещества. Метод электролиза применяется в аналитической практике для количественного определения различных веществ в растворах. [c.266]

    Фосфат-ионы образуют осадки с катионами третьей аналитической группы, а также с катионами магния и щелочноземельных металлов. Следовательно, присутствие фосфатов затрудняет разделение катионов второй и третьей аналитических групп и их необходимо удалить. Большие преимущества перед химическими методами отделения фосфатных ионов от катионов имеет ионный обмен на анионите (например, на смоле ЭДЭ-ЮП) в С1-форме. [c.140]

    Аналитические реакции олов а (IV). Олово(1У) обычно открывают, предварительно восстановив его металлическим железом, магнием, алюминием и т. д. до олова(И). Затем проводят реакции, характерные для о.това(П), как описано в предыдущем разделе. [c.378]

    Аналитические реакции катиона магния Mg . Реакции с щелочами и аммиаком. Катионы п]эи действии щелочей и аммиака образуют белый аморфный осадок гидроксида магния Mg(OH) .  [c.384]

    В аммиачно-фосфатном методе вместе выделяются фосфаты магния, марганца, железа, висмута, все растворимые в сильных кислотах в кислотно-щелочном методе нерастворимы гидроокиси магния, марганца, железа, висмута. Вместе с гидроокисями этих элементов выпадают также гидроокиси лантаноидов, актиноидов, элементов подгрупп 1ПВ, 1УВ, УВ, расположенных ниже диагонали амфотерности. Эти же гидроокиси выпадают в первой подгруппе 3-й аналитической группы по сероводородному методу. [c.20]

    При pH >9 гидроокись алюминия образует растворимые алюминаты, при рН>П хром образует растворимые хромиты. При pH >9,4 вместе с катионами 3-й аналитической группы выпадает гидроокись магния. Также при осаждении катионов 2-й аналитической группы в виде карбонатов аммиачный буферный раствор предотвращает осаждение карбоната магния. [c.60]

    При монтаже прибора определяют объем капиллярного пространства гребенки с отростками, заполняя его водой или ртутью с последующим вытеснением ее и взвешиванием на аналитических весах. Обычно этот объем не превышает 1,5 см . Для упрощения расчетов в бюретку обычно набирают 98,5 см газа, тогда его суммарный объем составит 100 см . Бюретка должна быть чисто вымыта, чтобы запирающая жидкость свободно стекала по ее стенкам от этого зависит правильность отсчетов. Обычно дают жидкости стекать в течение 1 ман. Время измеряют песочными часами. В качестве запирающей жидкости служит насыщенный раствор хлористого магния или 10%-ный раствор серной кислоты, подкрашенной метилоранжем. В этих растворах СО2 почти не растворяется, вследствие чего исключается неточность определения содержания этого колшонента в исследуемом газе. [c.242]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Щелочные и щелочноземельные металлы. На долю натрия, калия, кальция, магния в нефтях приходится от 10 до 10 " %, а в золе—15—20% массы. Эти элементы являются составной частью пластовых вод. Даже тщательная подготовка нефти к переработке, а также к аналитическим исследо-ввниям не приводит к полной очистке от микропримесей, особенно по отношению к веществам коллоидных размеров. Это увеличивает содержание рассматриваемых элементов при анализах. [c.310]

    Образует со многими металлами внутрикомплексные соединения с пятичленными циклами. Важным для аналитических целей является оксихинолинат магния, шредставляющий собой желтое кристаллическое вещество  [c.14]

    Определение жесткости воды. Определение жесткости воды было первым практически важным применением ЭДТА в аналитической химии. Жесткость воды, как уже отмечалось ранее, характеризуют молярной концентрацией эквивалентов кальция и магния (/эка = /2) и выражают в ммоль/л. Содержание этих элементов определяют прямым титрованием пробы воды в аммонийном буфере 0,01 М раствором ЭДТА в присутствии эриохром черного Т как индикатора и рассчитывают по формуле [c.243]

    Отклонение pH раствора от 9,2 в сторону повышения также может привести к нежелательным последствиям. В этом случ.ае в присутствии солей магния вместе с карбонатами катионов второй группы будет соосаждаться карбонат гидроксомагния и, следовательно, карбонат аммония не выполнит своей основной задачи разделения катионов первой и второй аналитических групп. [c.248]

    Определение магния, кальция, стронция и бария. Аналитические линии этих элементов расположены в основном в видимой и ультрафиолетовой областях спектра. Оксиды и карбонаты этих элементов относятся к тугоплавким соединениям, что обусловливает их медленное испарение. Спектры содержат небольшое число характерных линий, а поэтому присутствие этих элементов в спектре анализируемой пробъ упрощается. Эталонами при количественном анализе служат те же породы, в которых заранее химическим анализом определено их содержание. [c.48]

    NaaHPO , КгНРО или (NH4)2HPO образуют с катионами второй аналитической группы белые осадки гидрофосфатов или фосфатов магния, марганца, бария, стронция, кальция, железа (1П, алюминия н висмута желтые — железа (III) и зеленые — хрома (ill). [c.36]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    К первой аналитической группе, не имеющей группового реагента, относят катионы лития ЬГ, натрия N3 , калия К , аммония МН и магния Сюда же иногда относят катионы рубидия КЬ , цезия Сз , франция Рг . Так как эта группа катионов не имеет группового реагента, то катионы открывают в растворе с использованием различных аналитических реакций на каждый катион. Реакции прюводят в определенной последовательности. [c.293]

    К пятой аналитической группе относятся катионы магния Mg , марганца Мп , железа Fe и Fe , сурьмы Sb и 8Ь , висмута(Ш) Bi . Групповым реагентом является водный раствор щелочи (обычно 2 моль/л раствор NaOH) или 25%-й водный раствор аммиака. При действии груп- [c.322]

    Буферные растворы применяются в тех случаях, когда необходимо поддерживать постоянное значение pH раствора. Например,, чтобы осадить Zn + сероводородом, необходимо поддерживать-pH 1,5—2. Это достигается прибавлением формиатного буферного раствора, состоящего из смеси муравьиной кислоты НСООН и формиата аммония H OONH4, взятых в одинаковых концентрациях. При таком значении pH ион цинка осаждается из раствора в виде ZnS, в то время как другие катионы III аналитической группы (AF+, Сг +, Fe +, Мп2+, Fe2+, Со +, N1 + и др.) в осадок выпасть не могут и остаются в растворе. Аммиачный буферный раствор NH4 I+NH4OH предотвращает осаждение катионов магния при отделении катионов II аналитической группы от I. [c.129]

    Интересны, ввиду незначительной растворимости, смешанные гексацианоферраты рубидия и цезия с магнием и кальцием. Так, растворимость в воде при 25° Mei2Mgg[Fe( N)6]7-12НгО (в г/л) соли рубидия — 0,22, соли цезия — 0,10, растворимость Me2 a[Fe( N)e]-лНаО в тех же условиях соли рубидия — 0,18, соли цезия — 0,038 [1241. Столь низкая растворимость смешанных гексацианоферратов рубидия и цезия может быть использована как в аналитических, так и в технологических целях. К числу наименее растворимых и наиболее удобных в технологическом отношении соединений принадлежат смешанные гексацианоферраты рубидия и цезия с никелем (II) [1271. [c.110]

    Элементы подгруппы ПА (щелочноземельные металлы) образуют катионы, которые осаждаются или в виде карбонатов (сероводородный метод), или в виде сульфатов (кислотно-щелочный метод), или в виде фосфатов, не растворимых в щелочах и гидроокиси аммония (аммиачно-фосфатный метод) (1 / / =2,1—2,2). Сульфат свинца проявляет сходство с сульфатом стронция по величине Я,, равного 1,6 (у стронция / =1,5). Кроме того, фосфаты бария и свинца выделяются вместе (аммиачно-фосфатный метод). Магний в условиях сероводородного метода дает карбонат, растворимый в аммонийных солях, поэтому попадает в 1-ю аналитическую группу (по диагонали сходен с литием). В аммиачно-фосфатном методе магний выделяется в виде двойной соли — фосфата аммония-магния, растворимой в уксусной кислоте, поэтому попадает во 2-ю аналитическую группу (вторую подгруппу) вместе с марганцем (II), образующим также NH MпP04. [c.20]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Изоморфизм 2-го рода наблюдается при одновременном замещении катионов и анионов, если образующие их соли имеют одинаковые химические формулы, хотя зарядность замещенных ионов может быть различной. Например, перманганат калия образует смешанные кристаллы с сульфатом бария, селенатом бария, хроматом бария и сульфат бария — с КВ 4 (твердые растворы). Смешанные кристаллы выделяются из раствора, содержащего две изоморфные соли. При этом образуются однородные кристаллы переменного состава в зависимости от соотношения двух изоморфных солей. Изоморфизм карбонатов магния и кальция с карбонатами марганца, железа, цинка и кадмия может способствовать совместному осаждению этих ионов в 3-й аналитической группе катионов. Вследствие этого катионы магния, кальция и кадмия могут выпасть вместе с марганцем (И), железом (Н), цинком в осадок в виде карбонатов. Образование твердых растворов сильно затрудняет ход качественного, гравиметрического и микрокристаллоскопи-ческого анализов ( 39). [c.79]

    При ссаждении магния, марганца, железа, сурьмы, висмута в виде гидроокисей они могут быть в дальнейшем недостаточно полно разде-леиы вследствие сорбции осадком. Амфотерная гидроокись сурьмы (111) должна выпадать в 4-й аналитической группе. Однако этот осадок медленно растворяется, и сурьма может попасть в 5-ю группу, т. е. происходит неполное разделение. Сурьма распределяется между [c.150]

    Все щелочные металлы дают сходные реакции с рядом реагентов и окрашивают пламя газовой или спиртовой горелки в характерный цвет (табл. 27). Однако нет реагента, который бы давал малораство-римые осадки со всеми кaтиoнa ПI 1-й аналитической группы (или окрашивание пламени). Например, аммоний и магний не окрашивают пламя. [c.158]

    Большинство солей щелочных металлов растворимо в воде. Сульфат магния хорошо растворим (отличие от щелочноземельных металлов). Карбонат магния не осаждается в присутствии гидроокиси и хлорида аммония, поэтому не выделяется вместе с щелочноземельными металлами в виде карбоната. Растворимость карбоната магния 10 - моль л, т. е. больше, чем карбонатов Са, 5г, Ва. Щелочные металлы образуют сильные щелочи. Нитрокобальтиаты натрия, магния и щелочноземельных металлов растворимы в воде. Нет общего группового реактива на 1-ю аналитическую группу. Однако калий, аммоний, рубидий, цезий образуют малорастворимые гексанитрокобальтиаты, перхлораты, хлороплатинаты и гидротартраты. Га-логенидные соли щелочных металлов начинают испаряться только при 1000 °С их пары окрашивают пламя горелки. Соли аммония легко летучи при прокаливании и разлагаются около температуры красного каления. [c.159]


Смотреть страницы где упоминается термин Аналитические магния: [c.191]    [c.51]    [c.306]    [c.187]    [c.325]    [c.34]    [c.37]    [c.179]    [c.333]    [c.290]    [c.21]    [c.160]    [c.169]   
Аналитическая химия. Т.1 (2001) -- [ c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Краткая химико-аналитическая характеристика магния

Магний аналитические реакция

Отделение металлов третьей аналитической группы от кальция, магния и щелочей

Отделение металлов третьей аналитической группы от кальция, магния и щелочных металлов

Первая аналитическая группа катионов (ионы калия, натрия, аммония и магния)

Первая аналитическая группа катионов. Калий, натрий, цезий, рубидий, литий, аммоний и магний

Физико-химическая и химико-аналитическая характеристика магния и его соединений



© 2025 chem21.info Реклама на сайте