Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное присоединение к алкена

    Альдегиды также вступают в реакции окислительного присоединения к алкенам, особенно если в качестве инициатора применяются соли металлов [7]. Часто процесс протекает одновременно по двум направлениям, и присоединению ацильного радикала благоприятствует низкая концентрация соли металла. Так, при использовании ацетата марганца(1П) двумя возможными направлениями являются следующие [8]  [c.100]


    Как и в соответствующей реакции с алкенами (см. выше) за окислительным присоединением аллилгалогенида к катализатору следуют внедрение алкина и монооксида углерода с последующим гидролизом. Двойная углерод-углеродная связь, возникшая при внедрении алкина, сопряжена с карбонильной группой и обычно имеет г ис-конфигурацию. Предполагают, что транс-изомер, который иногда образуется в небольщих количествах, является продуктом изомеризации 1(ИС-изомера. Другими побочными продуктами являются производные циклопентанона, алкены, продукты димеризации аллилгалогенида и фенолы. Фенолы образуются, по-видимому, вследствие циклизации первичных продуктов (2,5-диеновых кислот), поскольку известно 33], что этот процесс легко протекает в присутствии кислот схема (6.40) ] побочным продуктом является хлороводород. аким образом, реакция карбонилирования обеспечивает удобный путь синтеза некоторых замещенных фенолов, которые трудно получить другими методами. [c.204]

    Производные карбоновых кислот вступают в реакции радикального присоединения алкенов [53] и аренов [54], что приводит к производным уксусной кислоты. В качестве источника радикалов для инициирования реакции можно использовать пероксиды и другие реагенты. Например, 7,6-непредельные кислоты получают при окислительном присоединении [55] алкенов к малонатам в присутствии солей марганца(II), кобальта (II) и каталитических количеств солей меди(11) схемы (32) — (34) . [c.18]

    Окислительное присоединение к алкенам [c.224]

    H N находит много промышленных применений. Он может прямо присоединяться к алкенам. Например, в реакции с бутадиеном образуется нитрил адипиновой кислоты, необходимый для производства найлона. Как катализаторы в этой реакции используются комплексы нульвалентного никеля с алкилфосфитами, которые активны как переносчики в реакциях окислительного присоединения (гл. 30). [c.313]

    В отличие от алканов этилен и его гомологи проявляют большую реакционную способность, что обусловлено наличием в нх молекулах двойной связи. Алкены способны вступать в реакции присоединения за счет разрыва л-связн. Кроме того, л-связь под действием окислителей разрушается легче, чем а-связь, поэтому для алкенов характерно участие в качестве восстановителей в окислительно-восстановительных реакциях. [c.318]

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]


    Среди многочисленных фторирующих реагентов, применяемых для фторирования органических молекул, выделяется группа неорганических и органических переносчиков фтора, реакции которых с органическими соединениями могут формально быть расценены как реакции электро-фильного фторирования. Индикация таких процессов - ориентация в реакциях с производными бензола, закономерности присоединения к алкенам и реакции с некоторыми элементоорганическими соединениями -указывает на роль в этих процессах "псевдоположительного" атома фтора. Разумеется, получение истинного фтор-катиона невозможно по термодинамическим причинам. Механизмы этих реакций сложны и во многих отношениях не всегда ясны. Однако этот факт не исключает использования термина "электрофильные фторирующие агенты", если результат такого фторирования может быть описан с этих позиций [26]. Успехи в практической реализации этих методов налицо, особенно в плане фторирования гетероциклических соединений, стероидов, сахаров и других природных веществ. Анализ синтетических возможностей таких реагентов и различные варианты введения фтора в органические молекулы с помощью переносчиков фтора являются предметом данной книги. Такие фторирующие реагенты обладают пониженной окислительной способностью, что позволяет проводить процесс, контролируемый по температуре, глубине фторирования и селективности. [c.17]

    Этиленхлорид (1,2-дихлорэтан) в больших масштабах производится в промышленности присоединением хлора к этилену в присутствии хлорида железа(П1), а также гетерогенным или гомогенным окислительным хлорированием этилена. В последнем случае алкен взаимодействует с соляной кислотой или хлористым водородом и кислородом в присутствии хлорида меди(П)  [c.299]

    Известен ряд окислительных реагентов, с помощью которых в мягких условиях возможно присоединение двух гидроксильных групп к алкенам. [c.280]

    Углерод-кислородные связи довольно легко образуются посредством реакций замещения, в которых разрываются связи С—Н, а также в жестких условиях реакций деструкции с разрывом углерод-углеродных связей. Реакции присоединения, такие, как гидратация алкенов в спирты, не рассматриваются как окислительные, но присоединение к алкенам с образованием двух новых связей С—О относится к реакциям окисления. [c.429]

    Подобный окислительно-восстановительный перенос обеспечивает специфическое активирование хлора. Как было описано выше, хлороформ реагирует с алкенами в отсутствие солей меди при присоединении трихлорметильного радикала С образованием [c.375]

    Ряд окислительных агентов реагирует с алкенами в мягких условиях конечным результатом реакции оказывается присоединение перекиси водорода в виде НО — ОН. Особое значение имеют перманганат и четырехокись осмия оба эти вещества реагируют на первой стадии по механизму цис-циклоприсоединения подобно озону. [c.182]

    Что касается окислительных трансформаций алкенов, то здесь особое место занимает их превращение в эпоксиды. Дтя этой цели в промышленности используют каталитическое окисление кислородом, а в лаборатории — над-кислотами, среди которых особенно эффективна A -xлopнaдб нзoйнaя кислота. Эпоксиды могут легко превращаться в 1,2-гликоли в условиях кислотного гидролиза. Поскольку эта реакция протекает с обращением конфигурации по одному из атомов углерода, то суммарный результат превращения ал-кен —> эпоксид 1,2-гликоль соответствует и-присоединению гидроксильных групп. Можно также осуществить и син-присоединение, для чего требуется использовать в качестве окислителей реагенты типа КМПО4 или ОзОц, Различие в стерическои результате этих двух формально сходных процессов вполне объяснимо в рамках представлений о механизмах этих реак-Щ1Й, показанных на схеме 2.61. [c.148]

    Аллильные группы, связанные л-связью с атомом никеля, должны, на первый взгляд, обладать реакционной способностью замаскированных карбанионов (/сршгго-карбанионов). Действительно, как показал Кори с сотр. [270, 271], эти лиганды способны реагировать с алкил-, алкенил- и даже с арилиодидами в ДМФ, давая продукты сочетания по Вюрцу (схема 241) (см. разд. 15.6.3.3 и 15.6.3.11). Кроме того, связанные с никелем аллильные лиганды могут присоединяться по типу реакции Михаэля к активированным двойным углерод-углеродным связям таких соединении, как акри-лонитрил [272] нли л-бензохинон [273] (схема 242). Тем не меиее участие карбанионов в катализируемых никелем реакциях образования простых углерод-углеродных связей маловероятно, и хотя ранее подобные процессы рассматривались как последовательность стадий окислительного присоединения и восстановительного элиминирования, в настоящее время для этих реакций предполагается радикально-цепной механизм (см. разд. 15.6.3.11). [c.309]


    Восстанов п тельное элиминирование RH после первоначального окислительного присоединения Нг к комплексу. Водород может присоединяться только к координационно пеиасыщениым комплексам реакция протекает через трехчленное переходное состояние и приводит к цис-прпсо-едипению атомов водорода к металлу [289]. Примером такого восстановительного элиминирования может служить финальная стадия (выделение продукта) процесса каталитического гидрирования алкенов иа катализаторе Уилкинсона (см. разд. 15.6.1.2 и [c.316]

    Катализаторами присоединения силанов к алкенам, как и в Случае каталитического гидрирования, служат комплексы платины, родня и кобальта [43]. Наиболее вероятный механизм этой реакции включает, как и гидрирование, стадию присоединения алкена с образованием координационно ненасыщенного л-комплекса, за которой следуют окислительное присоединение — Н51Нз, четырех- [c.326]

    Обычно реакция Хека включает взаимодействие арил галогенида с алкеном, чаще всего с эфирами акриловой кислоты, в присутствии палладиевого катализатора (обычно используют менее 1 мол. %), приводящее к образованию стирола (эфира коричной кислоты). Процесс включает (а) стадию окислительного присоединения арилгалогенида к Pd (0), (б) 1,2-внедрение палладийорганического соединения в алкен и последующее, вращение вокруг связи углерод — углерод для образования такой конформации, в которой р-атом водорода смнрасположен относительно палладия, и (в) р-гидридное элиминирование, приводящее к образованию стирола и регенерированию катализатора Pd(0). Катализатор, образовавшийся на заключительной стадии процесса, вновь вступает в стадию окислительного присоединения и, тем самым, включается в еновый каталитический цикл [c.68]

    Виниларены. Во многих алкенах атом водорода при двойной связи может быть замещен под действием ароматических или гетероциклических галогенидов в присутствии палладиевого катализатора [95] [схема (2.70)]. Полагают, что реакция протекает через окислительное присоединение галогенпроизводного с образованием арилпалладиевого интермедиата, который внедряет алкен и затем претерпевает р-гидридное элиминирование с высвобождением продукта и регенерацией катализатора [схема (2.71)]. [c.51]

    Арил-, винил- и гетероциклические галогениды каталитически превращаются в альдегиды при обработке их синтез-газом, при 80—100 атм и 80—150 С в присутствии [Р0Х2(РРЬз)2 (Х = С1, Вг) и стехиометрического количества третичного амина [схема (6.133)] [115]. Алкилгалогениды в условиях этой реакции скорее склонны подвергаться дегидрогалогенированию с образованием алкенов, чем карбонилированию, однако получаемые при этом выходы, как правило, высоки. Условия реакции зависят от природы субстрата так, иодиды карбонилируются быстрее хлоридов или бромидов из-за большей легкости окислительного присоединения иодида к катализатору, который, вероятно, является комплексом палладия(О) [Pd(СО) (РРЬз)2] [схема (6.134)]. [c.236]

    Окислительное присоединение водорода. Это доминирующий механизм для многих гомогенных катализаторов этот механизм типичен для реакций с катализатором Уилкинсона [схема (7.8)]. Начальная стадия заключается в отщеплении фосфинового лиганда от КЬС1(РРЬз)з с образованием координационно ненасыщенных соединений (3), содержащих родий(I). Такой 14-электронный интермедиат, окисляясь, легко присоединяет водород, образуя дигидрид родия(П1) (4). Координация дигидрида с алкеном приводит к комплексу (5), который далее превращается в комплекс (6). Каталитический цикл завершается элиминированием алкана и регенерацией интермедиата (3). [c.254]

    Окисление органических соединений в присутствии переходных металлов и их комплексов не только приводит к разнообразным кислородсодержащим продуктам, таким, как спирты, альдегиды, кетоны, карбоновые кислоты и эпоксиды, но может также сопровождаться различными реакциями сочетания. В этой главе рассмотрено образование кислородсодержащих продуктов такие реакции, как фенольное сочетание и окислительное присоединение к алкенам обсуждались в гл. 2 и 3. В данную главу включен также раздел, посвященный дегидрогенированию. [c.322]

    Вследствие обратимости первой стадии процесса олефин может изомернзоваться. Относительная значимость процессов изомеризации и гидрирования зависит от того, является ли обратимый процесс о-алкнл — я-алкен - -+ гидрид более благоприятным, чем последующий процесс окислительного присоединения — восстановительного элиминирования. [c.262]

    Оценку изменения уровня окисления органического соединения в ходе того или иного превращения проще всего сделать, если проследить за изменением уровня окисления соответствующего реагента. Так, например, образование спиртов в результате гидратации алкенов, равно как и обратная реакция дегидратации безусловно относятся к категории изогипсических превращений, поскольку в них участвует вода, не играющая здесь роли окислителя или восстановителя. Напротив, любые варианты гидроксилиро-вания алкенов, ведущие к образованию 1,2-гликолей, описываются как формальное присоединение пероксида водорода, несомненного окислителя, и потому должны бьггь отнесены к разряду неизогипсических, окислительных реакций. Также неизогипсическими являются такие реакции, как присоединение водорода (восстановитель ) или брома (окислитель ) по [c.134]

    Существует ряд окислительных реагентов, с помощью которых в мягких условиях возможно присоединение двух групп ОН к алкенам. При окислении оксидом осмия (VIII) или водным раствором перманганата калия образуются гликоли - вицинальные двухатомные спирты (диолы). [c.86]


Смотреть страницы где упоминается термин Окислительное присоединение к алкена: [c.174]    [c.102]    [c.102]    [c.513]    [c.452]    [c.339]    [c.80]    [c.200]    [c.179]    [c.179]   
Путеводитель по органическому синтезу (1985) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены



© 2025 chem21.info Реклама на сайте