Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на равновесие в химических системах

    ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА РАВНОВЕСИЕ В ХИМИЧЕСКИХ СИСТЕМАХ [c.202]

    Дополнение обоих начал термодинамики теоремой Нернста позволяет на основе термических данных с большой точностью вычислять условия равновесия и свободные энергии реакций, протекающих в газообразных и конденсированных системах. Однако в случае растворов такая возможность отсутствует, хотя уже сам Нернст [1 ] отмечал, что принципиальных затруднений здесь нет . Кроме того, имеется очень мало сведений о характере влияния растворителя на химические равновесия в растворах. [c.45]


    Очень многие химические реакции, в том числе технически и жизненно важные, протекают в жидких растворах. Растворами называются гомогенные смеси переменного состава. Растворителем называют компонент, концентрация которого выще концентрации других компонентов. Растворитель сохраняет свое фазовое состояние при образовании растворов. В последние годы все более щирокое применение находят неводные растворители, например пропиленкарбонат, тетрагидрофуран, диметилсульфоксид, ацетонитрил и уксусная кислота. Так как на равновесие и кинетику этих реакций оказывает влияние растворитель, то процессы в растворах имеют свои особенности, поэтому рассматриваются в отдельной главе. Способы выражения концентрации растворов были указаны в гл. 4 и приложении 1. Кроме растворов в настоящей главе рассматриваются дисперсные, в том числе коллоидные, системы и реакции обмена ионами между твердым телом и жидкостью (ионообменные реакции). [c.204]

    Итак, рассмотрение в самом общем виде закономерностей влияния растворителя на константу равновесия показьшает, что на положение химического равновесия оказывают влияние два основных фактора энергия специфической сольватации (иначе, донорно-акцепторные взаимодействия в системе растворенное вещество - растворитель) и ДП раствора, определяемая, за исключением умеренно- и высококонцентрированных [c.63]

    Применительно к неводным системам книга охватывает термодинамику, статику (равновесия), электрохимию (равновесную и необратимую) и кинетику реакций в неводных средах. В каждом разделе основное внимание уделяется влиянию растворителя на течение химического процесса. [c.4]

    Проблема влияния растворителя на равновесие процессов, протекающих в химических системах, сводится в первую очередь к рассмотрению двух вопросов — как изменяется равновесие процесса при переходе из газовой фазы в данный растворитель и от одного растворителя к другому. Наиболее важным в этом разделе химической статики является раздельная оценка влияния физических и химических свойств растворителя на химическое равновесие. Впрочем, объем экспериментального материала и степень разработки расчетных методов явно недостаточны для обоснованного ответа на первый из поставленных вопросов. Однако, несмотря на относительное обилие экспериментальных данных, относящихся ко второй проблеме, разграничение влияния физических (физические свойства) и химических (природа и энергия взаимодействия растворенного вещества с растворителем) факторов на химическое равновесие при переходе от одного растворителя к другому также может быть проведено лишь с относительной строгостью. Дело в том, что изменение физических свойств среды при переходе от одного растворителя к другому неизбежно сопряжено с изменением химических свойств, и наоборот. [c.202]


    Влияние физических свойств растворителя на константы равновесия процессов в химических системах может быть объяснено с электростатических позиций, если учесть, что в значительном числе случаев в первом приближении химические процессы сводятся к электростатическому взаимодействию, константа равновесия кото- [c.202]

    В целом можно считать, что, с одной стороны, влияние растворителя на скорость реакции гидроформилирования в большой мере зависит от природы непредельного соединения, а, с другой стороны, сказывается на суммарной скорости процесса значительно сложнее, чем просто изменение скорости собственно химической реакции, поскольку растворитель влияет также на фазовые равновесия в системе, гидродинамику, массоперенос и т. д. [c.76]

    Закрытые (адсорбционные) хроматографические колонки необходимо кондиционировать для стабилизации адсорбционной активности поверхности. Состояние равновесия требуется и для тонкослойной хроматографической системы. Когда течение подвижной жидкой фазы прекращается хотя бы на короткое время, возникает резкое изменение химического состояния слоя сорбента, находящегося в равновесии с окружающей газовой средой. Подвижная фаза состоит из растворителей различной летучести и полярности. Именно поэтому даже в момент нанесения пробы в ТСХ очень важно, чтобы объемная скорость потока элюента была постоянной. В ТСХ это условие необходимо выполнять более строго по сравнению с колоночной жидкостной хроматографией, где поток через кондиционированную колонку может быть приостановлен на несколько минут без существенного влияния на результаты разделения. Соответствующий экспериментальный подход описан ниже. [c.19]

    Среда (электролиты, полярные и неполярные растворители) оказывает существенное влияние на скорость и направление химических реакций, особенно в гетеролитических по механизму процессах. Это влияние можно свести к двум основным факторам, а именно влиянию природы растворителя и влиянию самих реагентов на скорости реакций и положение химического равновесия (солевые эффекты) вследствие изменения коэффициентов активности частиц реакционной системы. [c.140]

    На равновесие комплексообразования в системе металл — анион — органическое основание в значительной степени влияет такой компонент, как этанол, который обычно считается инертным или слабоактивным в химическом отношении растворителем. Так, при исследовании системы титан — диантипирилметан — роданид нами было установлено, что на оптические характеристики хлороформных экстрактов очень большое влияние оказы- [c.127]

    Близкие значения достигаемых постоянных значений молекулярных весов полиуретана в различных растворителях свидетельствуют, очевидно, об отсутствии влияния на исследованный процесс физического взаимодействия в системе полимер — растворитель (см. табл. 2), а изменение периода установления равновесия вероятнее всего может быть объяснено различной химической активностью используемых растворителей по отношению к продуктам деструкции. [c.140]

    В главе I приводятся необходимые сведения из термодинамики поверхностных слоев и выводятся специальные термодинамические соотношения, необходимые для анализа процессов поверхностного разделения. Процессы поверхностного разделения в системах химически не реагирующих веществ рассматриваются в главе П глава П1 посвящена этим же процессам, но осложненным протеканием химических реакций. В этих двух главах анализируются термодинамические уравнения и уравнения, основанные на балансе массы веществ, а также некоторые другие соотношения. Рассматриваются свойства диаграмм поверхностного разделения и их связь с диаграммами поверхностного натяжения, дается классификация диаграмм, излагаются как выводы общетеоретического характера, так и конкретные практические рекомендации (к отделению примесей, подбору растворителя и т. п.), следующие из теоретического анализа. В главе IV исследуется влияние кинетики установления адсорбционного равновесия на результат поверхностного разделения. [c.4]

    Таким образом, элюирующая сила подвижной фазы — это ее свойство вступать в такие межмолекулярные взаимодействия с компонентами системы, которые способствуют десорбции разделяемых соединений, более быстрому перемещению хроматографических зон. Конкретные физико-химические механизмы влияния растворителя на сорбционное равновесие различны в различных режимах ВЭЖХ и рассмотрены в следующих разделах. [c.41]

    КОН степени смещен в область сильного поля, что оба сигнала перекрываются. Спектры ЯМР и диаграммы температур застывания системы пиррол — ацетилацетон [80] указывают на образование слабого комплекса за счет водородных связей пиррола с карбонильным кислородом кетоформы ацетилаиетона. Возможно образование как 1 1, так и 1 2 комплексов. Использование метода двойного резонанса [46] позволило изучить влияние растворителей как на водород НН-, так и на водороды СН-групп. Разбавление пиррола циклогексаном смещает все сигналы в сторону слабого поля, причем наибольший сдвиг претерпевает сигнал от водорода НН-группы, а наименьший — сигналы от р-водородов. Этого нельзя ожидать в случае разрыва связи ЫН Ы, однако оно вполне совместимо с уменьшением я-взаимодействия между НН-группой пиррола и я-электронной системой второй молекулы [81]. Это взаимодействие изменяет химические сдвиги сс- и р-протонов. Из сопоставления длин связей видно, что р-протоны расположены так далеко от донорного пиррольного кольца, что его влияние невелико. Из двух возможных циклических димеров, из которых один содержит два пиррольпых кольца, являющихся я-донорами, а другой состоит из одной свободной и одной ассоциированной НН-группы,— первый лучше согласуется с результатами ЯМР. При добавлении пиридина к циклогексановому раствору пиррола сигнал от НН-группы смещается в область более слабого поля. Этот сдвиг приписывают ассоциации НН Н, включающей неподеленную пару электронов атома азота пиридина. Константы равновесия этой ассоциации были определены из температурной зависимости величина ЛН равна — 4,3 ккал/моль, а изменение стандартной энтропии Д5° = —8,0 кал/моль, что согласуется со значениями, полученными из калориметрических измерений и данных ИК-спектров. [c.437]


    Химическая термодинамика занимается изучением изменения энергии химической системы при ее превращении из начального в конечное состояние. Она предсказывает направление, в котором протекает реакция, и момент установления химического равновесия. Тот факт, что некоторая стехиометрическн возможная реакция не происходит в действительности, может быть обусловлен либо тем обстоятельством, что равновесие сильно смещено в сторону исходных реагентов, либо тем, что ее скорость слишком мала для того, чтобы быть измеренной. Термодинамика поясняет лишь первый аспект. Она дает указание на то, возможна ли данная реакция, но не на то, будет ли она происходить в действительности. Действительное осуществление реакции зависит от скорости реакции. Последняя зависит от того, каким образом разрываются связи в исходных молекулах и каким образом образуются новые связи в молекулах продуктов реакции от наименьшей энергии, необходимой для того, чтобы привести молекулы в такое состояние, в котором они могли бы подвергаться этим превращениям, от промежуточных стадий, через которые проходит химическая система при ее превращении, и от влияния реакционной среды (растворителя, катализаторов), т. е. от того, что обычно называется механизмом реакции. Эти проблемы составляют предмет химической кинетики в широком смысле этого слова. [c.155]

    Значительное число мембран, используемых в качестве ультрафильтров, получают методом спонтанного студнеобразования. Как следует из рассмотренной выше диаграммы фазового равновесия (рис. 3.7), необходимым условием спонтанного студнеобразования является более высокая упругость паров растворителя по сравнению с упругостью паров нерастворителя. Факторами, определяющими структуру и свойства мембран, помимо химического состава полимера являются природа растворителя и нерастворителя, концентрация полимера в растворе, скорость испарения растворителя, температура, при которой происходит распад раствора на фазы. Закономерности процесса во многом сходны с закономерностями стадии предформования при получении мембран методом сухо-мокрого формования. Распад исходного раствора на фазы может быть зафиксирован по изменению оптической плотности системы [83]. Проведенные с помощью этого метода исследования показали, что кинетика спонтанного студнеобразования в системе ацетат целлюлозы — ацетон — вода существенно зависит от концентрации исходного раствора (рис. 3.14). На кинетику процесса оказывают влияние также молекулярная. масса полимера (рис. 3. 15), концентрация нерастворителя в системе (рис. 3. 16) и температура испарения (рис, 3.17). Обычно увеличению размера пор способствует снижение концент  [c.106]

    При реакциях ионного обмена, протекающих за счет разности химических потенциалов в фазе ионита и в растворе электролита, по достижении в системе минимума свободной энергии устанавливается равновесное состояние. В соответствии с теорией мембранного равновесия Доннана [38], противоионы ионита стремятся диффундировать в раствор, что нарушает электронейтральность цони-та и ведет к поглощению эквивалентного количества ионов того же знака заряда из раствора. Процесс перераспределения ионов протекает до установления динамического равновесия [39]. На равновесное распределение ионов между раствором и ионитом значительное влияние оказывают природа последнего, величина сшивки (степень набухаемости), концентрация раствора, природа растворителя, pH среды, свойства обменивающихся ионов и другие факторы. Поэтому при теоретических и экспериментальных исследованиях ионообменных процессов значительные затруднения вызывает учет совокупности всех параметров, влияющих на ионный обмен. [c.16]

    Химические реакции, сведенные в схему равновесий в растворах, могут, но вовсе не должны протекать в каждом растворе. Схема может обрываться на каждой из стадий. Но совершенно очевидно, что коль скоро при смешении компонентов образовался раствор электролита, система должна пройти всю приведенную последовательность превращений, не пропуская ни одной ступенн. Природа превращений растворенного вещества в растворе, как видно теперь, самым тесным образом зависит от химических свойств растворенного вещества и растворителя. Неудивительно, что растворитель, принимая непосредственное участие в химических превращениях растворенного вещества, оказывает сильнейшее влияние на механизм и глубину превращения последнего. Вот почему СВОЕВРЕМЕННО И ИНТЕРЕСНО РАССМОТРЕТЬ [c.42]

    К подобным же выводам пришли Раткович и сотр., исследуя свойства смесей спирт — амин. В выбранных ими бинарных модельных системах, состоящих из первичного, вторичного или третичного амина и определенного гомолога из ряда жирных спиртов, эти авторы определили составы и концентрации образующихся в данных растворах ассоциатов. Они считают, что разнообразные физико-химические свойства смесей растворителей и их компонентов находятся в такой тесной зависимости от явления ассоциации, что только разносторонние исследования этих свойств помогут разобраться в сложных равновесиях в растворах. Раткович и сотр. исследовали равновесия пар — жидкость [75] и теплоты смешивания растворителей [76, 77, 84] они изучали диэлектрические свойства таких систем [53, 81], их вязкость [78, 79, 82, 87] и проводимость [83 — 86]. В результате многочисленных исследований они подтвердили образование смешанных ассоциатов из различных спиртов и аминов, равно как и самоассоциатов из обоих компонентов таких систем. Они сумели показать влияние состава и строения компонентов и их концентрации на размер и структуру ассоциатов в некоторых случаях им удалось даже сделать вывод о форме этих ассоциатов (цепи, циклы). [c.213]

    Переходному состоянию (о-комплексу) предшествует образование комплекса с переносом заряда (КПЗ) в результате донорно-акцепторного взаимодействия между молекулами диаминов и их производных (доноры электронов) и диангидридов или галогенангидридов (акцепторы электронов). Аналогичная схема, возможно, имеет место и при взаимодействии диаминов с дикарбоновыми кислотами, хотя это не подтверждено литературными данными. Отмечают [7], что донорно-акцеп-торное взаимодействие способствует созданию такой ориентации мономеров в системе, которая благоприятствует протеканию реакции, снижая величину предэкспоненциального множителя и энергию активации. Образование КПЗ зафиксировано для ряда систем галогенангидри-ды — третичные и первичные амины [7 16—18], пиромеллитовый диангидрид— диамины [19] и др. В ряде случаев удалось выделить КПЗ как индивидуальные химические соединения. КПЗ — энергетически неустойчивая система. Под влиянием внешних факторов происходит полный перенос электрона от донора к акцептору и образуется о-комплекс. Обе стадии (образование КПЗ и (т-комплекса) являются равновесными, имеют высокую скорость и низкую энергию активации. Константа равновесия реакции образования о-комплекса зависит от полярности растворителя [19 20] и электронной характеристики мономеров [20—22]. Например, в реакции пиромеллитового диангидрида с производными ПФДА замена тетрагидрофурана на более полярный ДМАА приводит [c.44]

    Растворители, применяемые для изготовления печатных красок, так же как и разбавители, вводимые перед печатание1М, долж ы обладать определенными физико-химическими свойствами, в частности таким поверхностным натяжением, чтобы печатная краска после разбавления до рабочей вязкости хорошо смачивала печатную форму. Адгезия краски к меди должна значительно превосходить центробежную силу, развивающуюся при вращении печатного цилиндра. Силы когезии между пигментами и связующим, [Возникающие при перетире, должны уравновешивать действующие на поверхности раздела силы адгезии краски к меди, причем это равновесие не должно нарушаться прежде, чем краска не будет перенесена на бумагу. Перенос краски на бумагу должен происходить возможно полнее, с извлечением всей краски из углублений печатной формы. Испарение растворителя, начинающееся, когда краска еще находится на поверхности печатной формы, интенсивно продолжается после переноса краски на бумагу равновесие системы пигмент-—связующее-—растворитель нарушается вследствие частичной адсорбции жидкой фазы поверхностью бумаги и особенно при переходе жидкой фазы в газообразную и удалении ее путем отсоса паров. На этой стадии скорость высыхания начинает оказывать первостепенное влияние на конечный результат процесса печатания. [c.247]

    Равновесные концентрации ионов могут быть рассчитаны, если известна концентрация титруемого раствора, количество добавленного титранта и значения констант диссоциации. Когда в основу определения положено кислотно-основное взаимодействие, химические равновесия характеризуются константами диссоциации кислот, оснований, амфоли-тов, а в неводных растворах также константами диссоциации солей. Если в процессе титрования образуются малорастворимые осадки или комплексные ионы, состояние равновесий обусловливается значениями произведений растворимости осадков и констант нестойкости комплексов. При использовании реакций окисления — восстановления равновесия зависят от окислительно-восстановительных потенциалов и т. д. В ряде случаев существенное влияние в общей системе равновесий оказывает константа автопротолиза растворителя. [c.98]

    Предполагается, что механизм несенсибилизированной изомеризации в твердой фазе обусловлен как прямым, так и непрямым возбуждением я-электронов двойных связей в результате столкновений молекул полимера с электронами больших энергий, генерируемых под влиянием у-лу-чей. Значительная часть энергии, приобретаемой метиленовыми группами полимера, передается двойным связям внутри молекулы. Такой процесс имеет место и в растворах, однако в этом случае он играет менее важную роль по сравнению с межмолекулярной передачей энергии от возбужденных или ионизированных молекул растворителя к двойным связям молекулы полимера. Двойная связь возбуждается до более высокого энергетического уровня, при котором я-электроны перестают участвовать в образовании связи (разрыхляющее, или антисвязывающее, состояние), тем самым обусловливая возможность свободного вращения вокруг остающейся одиночной 0-связи, соединяющей атомы углерода, между которыми ранее имелась двойная связь. Когда разрыхляющее состояние переходит в основное состояние с выделением энергии возбуждения, двойные связи образуются вновь, принимая, однако, главным образом ттгракс-конфигу-рацию, хотя количественно в меньшей степени, чем при сенсибилизированной изомеризации. Поэтому механизмы этих двух типов изомеризации принципиально отличаются между собой в том отношении, что в сенсибилизированных реакциях участвуют промежуточные радикальные аддук-ты, тогда как несенсибилизированная изомеризация осуществляется за счет возбужденного состояния двойных связей полимера. Этим различием в механизмах можно объяснить тот факт, что предельное соотношение цис-VI тракс-форм при несенсибилизированной изомеризации (33/67) выше соответствующего соотношения для сенсибилизированной реакции (20/80). В последнем случае величина этого соотношения должна определяться термодинамическими соображениями, тогда как в первом случае конечная величина соотношения цис- и транс-форм, по-видимому, обусловливается относительным числом цис- и тракс-звеньев с повышенными энергетическими уровнями [44]. Таким образом, в то время как в условиях термодинамического равновесия преобладает образование наиболее устойчивой формы, условия протекания реакции в системе, подвергающейся интенсивному облучению, часто благоприятствуют образованию менее устойчивой формы [45]. Классическим примером системы, характеризующейся таким различием в соотношениях цис- и тракс-форм при термодинамическом и фотохимическом равновесии, служит взаимопревращение малеиновой и фумаровой кислот [46, 47]. Вполне возможно, что такое же положение справедливо и для термодинамического и радиационно-химического равновесия при изомеризации нолибутадиена. [c.112]


Смотреть страницы где упоминается термин Влияние растворителя на равновесие в химических системах: [c.249]    [c.249]    [c.494]    [c.11]    [c.208]    [c.130]   
Смотреть главы в:

Физическая химия неводных растворов -> Влияние растворителя на равновесие в химических системах




ПОИСК





Смотрите так же термины и статьи:

Равновесие системе

Химическое равновесие

Химическое равновесие влияние



© 2024 chem21.info Реклама на сайте