Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомы планетарная

    Таким образом, складывалась весьма запутанная и противоречивая ситуация эксперимент говорил в пользу планетарной (ядерной) модели атома, тогда как согласно известным физическим законам такой атом существовать не мог. Выход был найден Н. Бором, теория которого опиралась на модель атома, предложенную Резерфордом, эмпирически установленные закономерности в атомных спектрах и гипотезу М. Планка. На последней надо остановиться особо. [c.7]


    Выводы Резерфорда стали основой для создания им планетарной модели атома вокруг положительно заряженного ядра атома, н котором сосредоточена основная часть массы атома, вращаются электроны. Заряды ядра и электронов численно равны, поэтому атом электронейтрален. Подобную модель называют теперь ядерной. [c.49]

    При развитии модели строения атома водорода Бору необходимо было преодолеть прежде всего внутренние противоречия, которые имели место в планетарной модели атома. По представлениям классической электродинамики вращающийся электрон должен непрерывно излучать энергию в виде электромагнитных волн. Отсюда следует, что электрон должен упасть на ядро, а также при непрерывном излучении спектр водорода должен быть сплошным, т. е. содержать линии, отвечающие всевозможным длинам волн. Однако, как известно, атом водорода устойчив и спектр его имеет дискретную структуру (рис. 3.5). Отсюда можно было заключить, что механические и электрические свойства макроскопических тел не могут служить моделью для такой микросистемы, как атом водорода (а также вообще микросистем). Бор вынужден был искать новую модель, которая не противоречила бы известным фактам. [c.53]

    Планетарная модель атома достаточно наглядно представляла строение атома. Пользуясь этой моделью, можно было объяснить некоторые свойства химических элементов, например способность одних атомов образовывать только положительно заряженные ионы, а других — только отрицательные. Однако планетарная модель атома находилась в противоречии с законами классической электродинамики, согласно которым вращающийся вокруг ядра электрон должен излучать энергию в виде электромагнитных волн. В соответствии с законом сохранения энергии излучение энергии электроном должно неизбежно сопровождаться уменьшением его скорости и электрон неминуемо должен упасть на ядро, в результате чего атом в виде планетарной системы должен перестать существовать. Иначе говоря, атомы должны излучать энергию в виде непрерывного, сплошного спектра и погибать как таковые. [c.45]

    Согласно предложенной модели Резерфорда в центре атома находится очень малое по размерам положительно заряженное ядро, в котором практически сосредоточена вся масса, а вокруг него на значительном расстоянии вращаются электроны. Число электронов таково, что атом в целом электронейтрален. Электроны движутся вокруг ядра подобно планетам в поле притяжения Солнца. Атомное ядро мало по сравнению с размерами атома, как мало Солнце по сравнению с орбитами планет (отсюда название — планетарная модель). [c.34]


    Ядро занимает ничтожную часть атома. Если атом увеличить до размера футбольного поля, то ядро будет иметь величину булавочной головки. Э. Резерфорд предложил планетарную модель атома, в которой ядро играет роль Солнца, вокруг которого подобно планетам вращаются электроны. В отличие от планет все электроны совершенно одинаковы. Такое представление о строении атома в общем сохранилось и в современной физике, хотя оно и подверглось весьма значительному пересмотру и усовершенствованию. [c.145]

    Таким образом, спектрограмма излучения данного элемента представляет собой набор большого числа линий, каждая из которых соответствует глубине расположения электронов в атоме. Спектрограмма показывает, что электроны в атоме находятся на различных глубинах , т. е. на различных расстояниях от ядра. Существенно, что атомы каждого элемента имеют свои строго индивидуальные спектры, отличающиеся от спектров остальных элементов. На этом основан спектральный анализ. Расшифровка атомных спектров и привела к дальнейшему развитию планетарной модели атома, созданной великим датским физиком Н. Бором. Изучение спектров излучения и поглощения элементов показало, что электроны во всех атомах располагаются упорядоченно, т. е. определенными группами в нескольких слоях вокруг ядра. Чем дальше находится электрон от ядра, тем слабее он притягивается к атому. Поэтому такие внешние, или периферийные, электроны относительно легко удаляются от атома. Они могут переходить от атомов, которые их удерживают слабо, к атомам, сильнее притягивающим электроны. Подобные переходы и вообще изменения в состоянии внешних электронов и составляют сущность всех химических реакций. [c.147]

    Основываясь на своих исследованиях, Резерфорд в 1911 г. предложил новую, планетарную модель, уподоблявшую атом солнечной системе. В центре должно было находиться очень маленькое положительно заряженное ядро, заключающее в себе почти всю массу атома, а вокруг ядра — располагаться электроны, число которых определяется значением положительного заряда ядра. Однако подобная система может быть устойчивой только в том случае, если электроны движутся, так как иначе они упали бы на ядро. Следовательно, электроны атома должны находиться приблизительно в таком же движении вокруг ядра, как планеты вокруг Солнца.  [c.69]

    Интересно отметить, что еще в 1819 г., т. е, почти за 100 лет до работ Резерфорда, очень сходные представления развивал в своих лекциях профессор Московского университета М. Г. Павлов. Основными его положениями были следующие а) движение доминирует в природе, абсолютного покоя нет б) природа света — электрическая в) все вещества образовались из первичной материи г) материя связана в своем строении с электрическим зарядом д) элементы имеют планетарное строение е) первый атом построен из положительного и отрицательного, зарядов. Само собой разумеется, что теоретические построения М. Г. Павлова имели умозрительный характер. [c.72]

    В 1898 г. Томсон предложил модель атома, в которой атом рассматривается как облако положительно заряженных частиц с распыленными в нем электронами. А в 1911 г., благодаря известному опыту Резерфорда, была принята планетарная модель атома. [c.15]

    В 19П г. выдающийся английский физик Э. Резерфорд предложил планетарную модель атома, которая базировалась на законах классической механики, описывающей движение макрообъектов. Согласно этой модели атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг ядра по круговым орбитам, подобно вращению планет вокруг Солнца. В ядре атома сосредоточена почти вся масса атома. Число электронов в ато.ме численно равно заряду ядра, [c.34]

    Для объяснения полученных результатов Резерфорд выдвинул идею планетарного строения атома. Он рассматривал атом как подобие Солнечной системы в центре- ядро, содержащее основную массу и весь положительный заряд атома, а вокруг, по разным орбитам, вращаются электроны. Эта модель довольно хорошо объясняла накопившийся к тому времени экспериментальный материал, но страдала двумя недостатками  [c.22]

    Магнитные свойства ферромагнитных материалов определяются магнитными свойствами многоэлектронного атома. Однако далеко не все материалы с многоэлектронными атомами обладают ферромагнитными свойствами. Строение атомов ферромагнитных материалов имеет ряд особенностей. Атом состоит из положительно заряженного ядра, вокруг которого вращаются электроны, образующие электронные слои и оболочки. Число электронных слоев определяют главным квантовым числом, которое принимает целые значения 1, 2, 3,. .., п. Число оболочек в слое выражают орбитальным квантовым числом I и обозначают их буквами 8, р, <1, f,. ... На рис. 1.16 показана планетарная модель атома железа, из которого видно, что в атоме содержится четыре электронных слоя. В первом слое находится одна электронная оболочка 18 с двумя электронами во втором слое содержатся оболочки 28 с двумя электронами, 2р с шестью электронами в третьем слое - оболочка Зз с двумя электронами, оболочка Зр с шестью электронами и оболочка 3(1 с шестью [c.238]


    В 1913 г. Нильс Бор интерпретировал ряд линий, удовлетворяющих указанному уравнению — серии Бальмера, — как эмиссионный спектр атома водорода. Следуя Резерфорду, Бор считал, что атом водорода состоит из ядра, несущего один положительный заряд, и одного планетарного электрона, двигающегося только на какой-либо одной из дискретных квантованных орбит. С каждой орбитой ассоциировано определенное значение энергии. С тех пор теория Бора стала яснее благодаря введению более новых идей статистической механики и не была дискредитирована. Теория современной спектроскопии привела к таким успехам, что не приходится сомневаться в том, что в разрядных трубках, содержащих газообразный водород, имеются свободные нейтральные атомы водорода. [c.92]

    До известной степени можно рассматривать атом как некоторое подобие планетарной системы электроны окружают ядро подобно тому, как планеты окружают Солнце. [c.21]

    Атом элемента представляет собой одну из важнейших микрочастиц. Первые исследователи ее строения (Н.Бор, А. Зоммерфельд, 1912, 1913) положили в основу внутриатомной энергетики представления теории квант. Электромагнитное поле атомного ядра квантовано, т. е. имеет дискретное строение в самой природе структуры атома заложены определенные энергетические уровни. В соответствии с ними электрон, рассматриваемый как частица, согласно теории Бора, движется вокруг ядра по круговым или эллиптическим орбитам, напоминая движение планет вокруг Солнца. Так возникла планетарная модель атома. Форма траекторий-орбит и их расстояние от ядра рассматривались как фактор, определяющий энергетическое состояние электрона. Энергетические уровни обозначались как главные кванто- [c.31]

    Согласно современным данным, атомы всех элементов состоят из положительно заряженного ядра и определенного (для атомов различных элементов—различного) количества электронов. Положительный заряд ядра атома и количество планетарных электронов по мере укрупнения атома непрерывно возрастают, причем атом в целом остается электронейтральным общее количество электронов в атоме всех элементов всегда численно равно положительному заряду ядра атома. Например, заряд ядра атома кальция равен -j-20. Атом кальция содержит 20 электронов, из которых каждый имеет заряд, равный —1. Суммарный заряд всех электронов —1-20 = —20. Суммарный заряд атома кальция в целом равен  [c.90]

    В 1911 г. Э. Резерфорд, используя проникающую способность радиоактивного а-излучения, раскрыл внутреннюю структуру атома. Он обнаружил, что атом состоит из небольшого по объему (г=10 —10 см), но тяжелого положительно заряженного ядра, содержащего по существу всю массу атома, и электронов, движущихся в положительном поле этого ядра. Однако Резерфорд не объяснил, каким образом движутся электроны в атоме. Чтобы придать наглядность обнаруженной им структуре атома, он сравнил ее со структурой солнечной системы. Отсюда и пошло название планетарная модель , где ядро — солнце, а электроны — планеты. Такая модель не объясняла все же состояние электронов. Во-первых, было непонятно, почему электрон не падает на ядро, [c.45]

    Датский физик Бор внес в планетарную модель атома Резерфорда квантовые представления и объяснил происхождение линейчатых спектров атомов. Его теория строения атома водорода основывается на двух посту- атах. [c.46]

    К концу XIX века химики уже знали, что молекулы -могут быть плоскими или обладать трехмерной структурой. Все согласились обозначать химические связи черточками, т. е. уже умели графически изображать молекулу. Однако за этим благополучием таилась пустота никто не знал, что же материальное кроется за этой самой черточкой. А эту проблему рещить без помощи физиков было совершенно невозможно что скажешь о связи между атомами, если неизвестно, как устроен сам атом. Пришлось дождаться революции в физике, появления квантовой теории света, а за ней и планетарной модели атома. Создавая ее, Нильс Бор задался целью объяснить как раз то, что интересовало химиков — поглощение и излучение света. Правда, не молекулой, а атомом, который и поглощает, и излучает свет строго определенными порциями — квантами. Допустив, что ядро атома играет роль солнца, а вращающиеся вокруг него электроны — планет, Бор заключил, что орбиты планет могут быть только строго определенными, дозволенными . Именно при этом условии возбуждение электрона, его переход с одной орбиты на другую, более далекую от притягивающего его ядра, потребует точно отмеренной порции энергии. И точно такой же квант выделится, [c.161]

    Можно считать, что теория Льюиса в ее современном виде выросла из теории строения атома Резерфорда, изображающей каждый атом в виде миниатюрной солнечной системы, в которой отрицательно заряженные электроны вращаются вокруг положительно заряженного ядра. Практически вся масса атома локализирована в его ядре. Электроны атомов всех элементов тождественны друг другу, но ядра атомов каждого элемента отличаются от ядер атомов другого элемента по своему заряду и массе. Их средние массы пропорциональны их атомным весам, тогда как их заряды, выраженные как кратные заряда электрона, равняются их атомным номерам, которые можно найти в таблице Менделеева или из рентгеновских спектров элементов (Мозли). Так как атомы нейтральны, то число планетарных электронов каждого атома должно быть численно равным атомному номеру. [c.469]

    Резерфорд для объяснения рассеяния а-частиц предложил планетарную модель строения атома. Согласно этой модели атом состоит из положительно заряженного ядра, очень малого по размерам. В ядре сосредоточена почти вся масса атома. Вокруг ядра движутся электроны, которые образуют электронную оболочку атома. Центробежная сила противодействует силе притяжения электронов ядром. [c.35]

    Э. Резерфорд предложил принципиальную модель строения атома, получившую название планетарной. В центре атома любого элемента находится положительно заряженное ядро, которое занимает ничтожно малый объем, но в котором сосредоточивается основная масса атома. Электроны двигаются вокруг ядра по орбитам, как планеты вокруг Солнца. Число электронов равно положительному заряду ядра, п атом в целом электронейтрален. Центробежная сила движения электронов уравновешивается центростремительной силой притяжения ядра. Поэтому, двигаясь по орбитам, электроны не удаляются от ядра и не падают на него. [c.42]

    К концу XIX века химики окончательно пришли к выводу, что все тела состоят из механически неделимых молекул, что молекулы являются сложными частицами, которые построены из еще более простых частиц — атомов. В свою очередь и атом является сложной частицей, построенной по принципу планетарной системы из самых простых частиц — электронов, [c.27]

    Открытия, сделанные физиками в конце прошлого столетия и в начале XX века, подтвердили смелые идеи русских химиков о сложном строении атома. Эти открытия прежде всего показали, что атом не является пределом деления материи, что в природе существуют частицы еще меньше атома, что атом представляет сложную планетарную систему, построенную из так называемых элементарных частиц. В настоящее время идея планетарного состояния строения атома получила строго научное обоснование. [c.286]

    В 1910 Г. английский физик Резерфорд совместно со своими учениками предпринял исследование прохождения а-частиц через металлические пластинки (медь, серебро и платина). Эти опыты доказали, что атом действительно имеет планетарное строение с массивным ядром в центре и электронами, вращающимися вокруг него. [c.291]

    Испускание излучения определенных длин волн объясняется электронной структурой атомов излучающего элемента. В процессе возбуждения планетарному электрону сообщается достаточное количество энергии, чтобы поднять его с нормальной орбиты или энергетического уровня на более высокий. Когда электрон перескакивает на свой нормальный уровень, он испускает квант лучистой энергии соответствующей величины. Атомам различных элементов отвечают специфичные им энергетические уровни, и так как длина волны излучения определяется энергией кванта, то длины волн, характерные для любого данного элемента, будут всегда одни и те же. Многообразие линий в спектре более тяжелых переходных металлов объясняется большим числом различных энергетических уровней. Каждый атом в данный момент может испускать излучение только одной длины волны, но так как любой образец представляет собой совокупность огромного числа атомов, то в спектре появляются линии всех возможных длин волн. Математическая обработка здесь довольно сложна и не имеет непосредственного отношения к применению в аналитической химии. [c.129]

    Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, атом представляют как ядро, вокруг которого по орбитам вращаются электроны. Последовательность элементов в периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме их радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантовомеханических представлений. [c.136]

    Успех в этом направлении был достигнут не сразу. Существенную роль в развитии структурной теории сыграла физика атома. В результате открытия радиоактивности, рентгеновских лучей и электронов постепенно стало ясным, что в основе валентности и химической связи лежит электрон. В 1913 г. Бор дал теорию строения атомов, согласно которой каждый атом представляет собой как бы планетарную систему с положительным ядром в центре и с электронами, вращающимися вокруг него по орбитам. Вскоре после этого появились теории химической связи, построенные на электронных представлениях. [c.7]

    Так как атомы электронейтральны, то, следовательно, в них должны содержаться и какие-то частицы, заряженные положительно. При изучении внутреннего строения атомов очень важное значение имели опыты по рассеянию а-частиц при прохождении их в газе и через металлическую фольгу (а-частицы заряжены положительно). В камере Вильсона наблюдаются прямолинейные пути а-частиц в газе. Следовательно, а-частица проходит сквозь атомы. Однако она, хотя и редко, но резко отклоняется от прямолинейного пути, что указывает на столкновение ее с положительно заряженной частицей. Эти наблюдения привели к выводу, что атом состоит из положительно заряженного ядра весьма малого объема (г = = Ю- з см), в котором сосредоточена почти вся масса атома, и электронов, находящихся на значительном расстоянии от ядра. На основании обобщения экспериментальных данных, Резерфорд в 1911 г. предложил планетарную модель атома, согласно которой атом в целом дейтраден. а положительно заряженное ядро его окружено эле1 омм п ичем ч заряду ядра (порядковому [c.15]

    Дальнейшее совершенствование модели атома водорода Бора. В модели Бора электроны движутся только по круговым орбитам. Но так как атом Бора по существу представляет планетарную систему, в которой движение, согласно законам Кеплера, происходит по эллипсам, то естественно, что усовершенствование модели Бора должно было состоять в переходе к движению электрона по эллипсам, тем более, что модель Бора не могла объяснить все детали спектра водорода. Это было сдаЛэно Зоммерфельдом (1915 г.). [c.19]

    Решающая роль в утверждении планетарной теории строения атома принадлежит Резерфорду. Его опыты (1911) заключались в бомбардировке тонкой металлической фольги (из золота и других металлов) потоком быстрых а-часгиц и наблюдении за направлением движения этих частиц (рис. 13). Пучок а-излучения радия пропускался через диафрагму К и падал на золотую фольгу М. толщиной —500 нм, что отвечает примерно 1000 слоев ато- а л мов. С помощью регистрирую-щего устройства Р (счетчик и , [c.67]

    Однако иа протяжении последующих более 40 лет П.с. в значит, степени представляла собой лишь эмпирич. обобщение фактов, поскольку отсутствовало фиэ. объяснение причин периодич. изменения св-в элементов в зависимости от возрастания их атомной массы. Такое объяспение было невозможно без обоснованных представлений о строении атома (см. Атом). Поэтому важнейшей вехой в развитии П.с. стала планетарная (ядерная) модель атома, предложенная Э. Резерфордом (1911). В 1913 А. ван ден Брук пришел к выводу, что порядковый номер элемента в П.с. численно равен положит, заряду (2) ядра его атома. Этот вывод был экспериментально подтвержден Г. Мозли (закон Мозли, 1913-14). В результате периодич. закон получил строгую физ. формулировку, удалось однозначно определить ниж. границу П.с. (И как элемент с миним. 2=1), оценить точное число элементов между И и и и установить, какие [c.482]

    Не спасает положения и естественное, казалось бы, предположение о том, что электроны вокруг ядра движутся по эллиптическим орбитам подобно планетам вокруг Солнца На эту мысль наталкивает сходство сил всемирного тяготения с кулоновскими Такая планетарная модель атома удержалась в физике до наших дней, но не более как наглядное изображение Реально атом в форме такой планетарной системы не может существовать, так как вращающиеся вокруг ядра электроны движутся ускоренно Но тогда они, как всякие ускоренно движущиеся заряженные частицы, должны излучать электромагнитные волны Действительно, если застав1пъ электроны двигаться по кругу (как в ускорителях элементарных частиц — синхротронах), то возникнет электромагнитное синхрот-ронное излучение [c.9]

    Данные, полученные Э. Резерфордом, послужили основой для создания так называемой ядерной или планетарной модели атома, предложенной им в 1911 г. Согласно этой модели, электроны, подобно планетам солнечной системы, двигаются по круговым, вернее эллиптическим орбитам вокруг центра, в котором размещается положительно заряженное ядро. Так как атом электрически нейтрален, то заряд его ядра должен быть равен сумме зарядов всех вращающихся вэкруг него электронов. [c.16]

    Все эти данные позволяют нарисовать общую картину строения атома. Атом в целом нейтрален, и все его положительные заряды сосредоточены в ядре, вне ядра находятся электроны в числе, достаточном для нейтрализации положительного заряда ядра. Другими словами, число электронов, внешних по отношению к ядру, тоже равно менделеевскому числу (порядковому номеру) эле.чента. Подобная система из ядра и электронов может находиться в равновесии только в том случае, если электроны движутся, так как иначе они упали бы на ядро под влиянием силы притяжения со стороны положительного заряда его. Следовательно, электроны в атоме движутся вокруг ядра приблизительно так же, как планеты вокруг солнца. Такая ядерная, или планетарная модель, уподоблявшая атом солнечной системе, была предложена Резерфордом (Ш11 г.). [c.72]

    Движение доминирует в природе. 2. Природа света—электрическая. 3. Все вещества образовались из первичной материи. 4. Материя связана в своем строении с электрическим зарядом. 5. Элементы имеют планетарное строение. 6. Первый элемент построен из положительных (-Ь) и отрицательных (—) зарядов. Далее, в 1888 г., Б. Чичерин опубликовал большую статью, в которой также развиваются представления о планетарной структуре элементов. Чичерин высказывает мысль, что атом каждого элемента представляет собой подобие солнечной системы, с центральной массой и обращающимися вокруг нее по орбитам частицами. Слоистым расположением таких орбит объясняется периодичность свойств химических элементов. [c.92]

    Примерно в 20% всех случаев термолизованный, т, е. замедленный до тепловых скоростей, позитрон присоединяет к себе электрон, образуя так называемый позитроний — Ps-систему, аналогичную атому водорода, в которой, однако, ядро заменено позитроном. Если рассматривать- эту систему на основе планетарной модели водородоподобного атома (модель Н. Бора), то ясно, что в отличие от атома водорода, где электрон практически вращается вокруг гораздо более тяжелого протона, данная система будет вращаться вокруг общего центра тяжести, находящегося посередине. [c.105]

    Большая ось эллипсоидальных орбит равна диаметру круговой того же запаса энергии. Соотношение осей эллипса меняется от 1 до [п—1). Было введено квантовое число I, соответствующее различным ориентациям эллипса в пространстве. При наложении магнитного поля на атом для характеристики проекции вектора орбитального момента на направление поля (силовую ось) было введено магнитное квантовое число /п . Его значение меняется от —I через О до 1. Таким образом, теория планетарной модели атома требовала для характеристики и расчета спектров атомов уже не одно, а три целочисленных характеристики п — главное квантовое число, I — побочное квантовое число, mi — магнитное квантовое число. Теперь теория правильно стала объяснять спектры многоэлектронных атомов. Однако опыт—самый строгий кри тик всех теорий — показывал, что объяснение является лишь ка-> иественным. Стала понятна лишь систематика линий в спектрах можно было каждую спектральную линию связать с оаределенныл переходом электрона. Однако ни энергию электронов, ни интен сивность линий в спектрах теоретически рассчитать не удавалось, [c.47]

    Атом водорода. Хотя вопрос о структуре простейшего атома — атома водорода — и казался разрешенным предложенной в 1911 г. планетарной моделью, однако в самой этой модели таились внутренние противоречия. Действительно, по представлениям классической электродинамики, вращающийся вокруг ядра электрон должен непрерывно излучать энергию в виде электромагнитных волн. Отсюда вытекают два важных следствия. I) Из-за постоянного излучения энергии радиус орбиты электрона должен псследооателько уменьшаться в конце концов электрон должен упасть на ядро, что привело бы к уничтожению атома, как такового. 2) Вследствие постепенного изменения скорости вращения электрона электромагнитное излучение атома должно состоять из непрерывного ряда лучей различных длин волн. Иначе говоря, спектр водорода должен быть с п л о ш и ы. м, т. е. содержать линии, соответствуюш,не в с е в о з м о ж и ы jvi длинам волн. [c.86]

    Планетарная теория строения атомов. Резерфордовская нуклеарная модель атома для химиков не могла представить особого интереса. Она была еще слишком обща, слишком обезличена. Из того, что по сравнению с атомом аргона атом калия содержит лишнюю единицу положительного заряда в ядре и лишний электрон в электронной оболочке, никак не вытекал столь резкий скачок в свойствах между этими двумя элементами. Но исследование атома на нуклеарной модели атома не остановилось. Нуклеарная теория атома развилась в планетарную теорию. Что атом, есть нечто очень сложное, легко было заключить уже из крайней сложности спектров элементов искровой спектр железа заключает, например, в себе тысячи линий. Опираясь на теорию испускания световой энергии малыми, но конечными порциями — квантами, а также используя метод аналогии с коперниковой теорией солнечной системы, Нильс Бор создал планетарную теорию строения атомов. [c.78]


Смотреть страницы где упоминается термин Атомы планетарная: [c.18]    [c.89]    [c.55]    [c.657]    [c.54]    [c.151]   
Учебник общей химии 1963 (0) -- [ c.58 , c.59 ]




ПОИСК







© 2025 chem21.info Реклама на сайте