Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса индукционные

    Силы Ван-дер-Ваальса складываются из следующих сил взаимодействия ориентационных, индукционных и дисперсионных. [c.16]

    Эти процессы происходят под действием сравнительно слабых межмолекулярных сил притяжения — сил Ван дер Ваальса, имеющих электростатическую природу. Общая анергия взаимодействия молекул адсорбата и адсорбента складывается из энергии дисперсионных, индукционных и ориентационных сил, а иногда и энергии специфического взаимодействия (водородная связь, донорно-акцепторное взаимодействие). [c.15]


    Согласно первой теореме подобия, процессы и явления в трех рассматриваемых категориях должны быть общими и пропорциональными [65]. В нашем случае соблюдается подобие химических, физических, физико-химических и электрохимических процессов и явлений. Так, очевидно, что основой ПИНС, как и основой любых нефтепродуктов, является химическое строение веществ, стерические факторы, полярность и поляризуемость молекул, энергии основных химических связей (ковалентная, координационная, ионная связь) и молекулярные взаимодействия — электроно-донорно-акцепторные (эда-взаимодей-ствия), комплексы с переносом заряда (кпз), водородные связи, взаимодействия, обусловленные силами Ван-дер-Ваальса (индукционное, ориентационное, дисперсионное взаимодействие), комплексы свободных стабильных радикалов (кср), а сле- [c.41]

    В ассоциированном состоянии молекулы подвержены суммарному воздействию химических и физических взаимодействий. Природа физических межмолекулярных взаимодействий (ММВ) - это силы Ван-дер-Ваальса, образование комплексов и радикально-молекулярное взаимодействие. Основные из них силы Ван-дер-Ваальса - взаимодействие между двумя полярными молекулами, т. е. ориентационные силы (энергия такого взаимодействия снижается с ростом температуры), и взаимодействие между дипольной молекулой и другой, в которой диполь наводится первой, т. е. индукционные силы (это взаимодействие не зависит от температуры). [c.166]

    Теоретические основы. Очистка основана на способности полярных растворителей преимущественно растворять полициклические ароматические углеводороды и смолистые соединения, наличие которых в масле нежелательно. Основную роль в процессах селективной очистки играют силы Ван-дер-Ваальса (ориентационные, индукционные, дисперсионные), обеспечивающие взаимодействие полярных молекул растворителя с полярными или поляризуемыми молекулами сырья. [c.211]

    Взаимодействие мгновенных диполей, возникающих в результате внутриатомного или внутримолекулярного движения, и является причиной существования третьей разновидности сил Ван-дер-Ваальса. Лондон [15] нашел тесную связь между природой этих сил и процессом оптической дисперсии. Поэтому силы были названы дисперсионными. С точки зрения классической (не квантовой) теории ориентационные, индукционные и дисперсионные силы довольно существенно отличаются друг от друга. Однако общая квантовомеханическая теория сил Ван-дер-Ваальса, развитая Лондоном, приводит к выводу, что ориентационные, дисперсионные и индукционные силы по своему происхождению едины. [c.64]


    Анализ формулы (49.17) для U показывает, что ориентационная энергия значительна только для сильно полярных молекул, индукционная энергия обычно очень мала, и наиболее важным слагаемым в (49.17) является дисперсионная энергия (табл. 29). Особая важность дисперсионного взаимодействия в том, что нет веществ, в которых оно не проявлялось бы, и в аддитивности дисперсионных сил. Так как силы Ван-дер-Ваальса вызывают отклонение состояния газов от идеальности, то константы уравнения Ван-дер-Ваальса [c.262]

    Перейдем теперь к рассмотрению сил притяжения и связанной с ними компоненты энергии взаимодействия Ua- Наиболее универсальны силы Лондона — Ван-дер-Ваальса, так как они действуют между молекулами независимо от их полярности. Для ансамбля частиц только они аддитивно складываются, тогда как ориентационный и индукционный эффекты отдельных молекул в значительной степени взаимно компенсируются. [c.242]

    При взаимодействии полярных и неполярных молекул в последних под действием электрических полей полярных молекул наводится (индуцируется) электрический дипольный момент. Этот эффект называется индукционной составляющей сил Ван-дер-Ваальса. Энергию индукционного взаимодействия рассчитывают по формуле [c.24]

    В смесях, содержащих полярные и неполярные молекулы, возникает взаимодействие между молекулами, обусловленное электростатическим притяжением между диполями полярных молекул и наведенными (индуцированными) диполями неполярных молекул. Последние возникают в результате поляризации под действием электрических полей диполей, окружающих данную полярную молекулу. Этот эффект называется индукционной составляющей сил Ван-дер-Ваальса. Энергия индукционного взаимодействия д возрастает с увеличением электрического момента диполя и не зависит от температуры, так как наведение диполей определяется напряженностью всего поля и происходит при любой пространственной ориентации молекул. [c.57]

    Ваальса ). Относительное значение каждого вида для того или иного случая зависит в основном от двух свойств взаимодействующих молекул — их полярности и деформируемости. Чем выше полярность, тем значительнее роль ориентационных сил, чем больше деформируемость, тем значительнее роль сил дисперсионных. Индукционные силы зависят от обоих факторов, но сами играют лишь второ- [c.104]

    Большая разница в теплотах испарения различных молекулярных веществ, изменяющаяся в связи с изменением температуры кипения (табл. 10), свидетельствует о неоднородности сил Ван-дер-Ваальса. Три вида взаимодействий объединяются под названием сил Ван-дер-Ваальса ориентационное, индукционное и дисперсионное. [c.112]

    Физическая адсорбция - это взаимодействие молекул с поверхностью твердых тел с помощью сил Ван-дер-Ваальса (дисперсионных, индукционных и ориентационных). Физическая адсорбция - обратимый процесс. [c.685]

    Свойства веществ обусловливаются не только внутримолекулярными, но и межмолекулярными взаимодействиями. Межмолекулярные взаимодействия проявляются в процессах конденсации, растворения, сжатия реальных газов и т. д. и называются силами Ван-дер-Ваальса. Они отличаются от химических сил взаимодействия тем, что имеют электрическую природу, проявляются на значительно больших расстояниях, характеризуются небольшими энергиями (10—20 Дж/моль), а также отсутствием насыщаемости и специфичности. Энергия химических сил в 7—10 раз больше межмолекулярных. Как показывают квантово-механические расчеты, энергия ван-дер-ваальсова взаимодействия слагается из электростатической, индукционной и дисперсионной энергией. [c.235]

    Взаимодействие атомов и молекул. Силы Ван-дер-Ваальса могут слагаться из трех компонент 1) диполь-дипольного взаимодействия (силы Кеезома) 2) индукционного взаимодействия (силы Дебая) 3) дисперсионного взаимодействия (силы Лондона). Существование первых двух типов взаимодействий предполагает наличие по крайней мере наведенного дипольного момента у обеих молекул. Между неполярными молекулами действуют только дисперсионные силы, которые обусловлены флуктуациями зарядов, возникающими вследствие движения электронов. Электронные флуктуации в атомах или молекулах приводят к появлению изменяющихся во времени диполей. Взаимное влияние флуктуационных диполей вызывает фазовый сдвиг колебаний (при малых расстояниях он составляет 0°) и поэтому две неполярные молекулы всегда притягиваются друг к другу. [c.31]

    Особенностью дисперсионного взаимодействия является его всеобщность, и для неполярных молекул оно наряду с индукционным взаимодействием — главный и практически единственный источник сил Ван-дер-Ваальса, определяющих агрегатное состояние вещества Дисперсионное взаимодействие вносит известный вклад и в энергию ионной связи в молекулах и кристаллах [c.65]

    Тот факт, что между коллоидными частицами существуют силы притяжения, был установлен еще в начале этого столетия Смолуховским по кинетике коагуляции золей. В 1932 г. Кальман и Вильштеттер их приписали силам Ван-дер-Ваальса, действующим между атомами и молекулами. Как известно, эти силы состоят из ориентационной, индукционной и дисперсионной составляющих, причем все они убывают обратно седьмой (энергия — шестой) степени расстояния, т. е. действуют на очень малых расстояниях. Однако, как показали Де Бур и Га-макер, для макроскопических тел, например коллоидных частиц, состоящих из многих тысяч атомов (молекул), эти силы складываются, в результате чего суммарная энергия притяжения частиц изменяется гораздо медленнее — по кубическому или квадратичному закону. Иначе говоря, эти силы в определенных условиях достаточно велики и соизмеримы с силами отталкивания двойных электрических слоев. Основной вклад в молекулярное притяжение дисперсных тел вносят силы дисперсионного взаимодействия (лондоновские силы), так как ориентационные и индукционные эффекты отдельных молекул для достаточно большого ансамбля взаимно компенсируются. [c.15]


    Обычно принимают, что силы Ван-дер-Ваальса в общем случае слагаются из трех составляющих ориентационной, индукционной и дисперсионной. [c.63]

    Согласно молекулярной теории растворов [74], состояние системы определяется двумя противоположно действующими факторами с одной стороны, межмолекулярным взаимодействием, обусловливающим потенциальную энергию молекул, и, с другой,-тепловым движением, которое определяет их кинетическую энергию. Притяжение между молекулами, объясняющее взаимную растворимость веществ, создается за счет сил Ван-дер-Ваальса (ориентационное, индукционное и дисперсионное взаимодействие) и водородных связей, в которых существенную роль играет донорно-акцепторное взаимодействие. [c.59]

    Молекулы всех веществ, совершающие хаотическое тепловое движение в пространстве, испытывают действие сил взаимного притяжения. По мере сближения молекул начинают проявляться и силы отталкивания между ними. На некотором расстоянии между молекулами эти силы взаимно уравновешиваются, что отвечает минимуму потенциальной энергии. Межмолекулярные силы притяжения, называемые иногда силами Ван-дер-Ваальса, много слабее валентных сил, обусловленных химическим взаимодействием элементов. В зависимости от происхождения сил межмолекулярного взаимодействия принято различать три вида ориентационное, индукционное и дисперсионное. К такого рода взаимодействиям также относят водородную связь. [c.59]

    Влияние полярности НЖФ на селективность и порядок разделения компонентов обусловлено соотношением вклада сил межмолекулярного взаимодействия сорбата с НЖФ в общую энергию этого вза-кмодействия. Межмолекулярные силы (когезионные силы Бан-дер-Ваальса) имеют электростатическую природу. Они подразделяются на ориентационные, индукционные и дисперсионные. [c.192]

    К силам притяжения, действующим между молекулами, относятся силы Ван-дер-Ваальса, имеющие общую элект ромаг-нитную природу. Ван-дер-ваальс01вы взаимодействия принято считать да льнодействующим и, слабыми, объемными, коллективными и универсальными. В общем случае ван-дер-вааль-сово взаимодействие складывается из трех эффектов ориентационного (или диполь-дипольного), индукционного (диполь-наведенный диполь) и дисперсионного ( лондоновское взаимодействие)  [c.9]

    Вандерваальсовы силы. Слабые взаимодействия между нейтральными молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, были впервые обнаружены голландским ученым Ван-дер-Ваальсом. В связи с этим силы, вызывающие подобного рода взаимодействия, называют вандерваальсо-выми силами. Силам Ван-дер-Ваальса приписывают электростатическую природу. Обычно в зависимости от природы системы выделяют три составляющие вандерваальсовых сил ориентационную, индукционную и дисперсионную. [c.57]

    Все три типа межмолекулярного взаимодействия — ориентационное, индукционное и дисперсионное — часто называют в а и -дер-ваальсовыми силами. Так они названы в честь голландского физика Ван-дер-Ваальса, который впервые принял их во внимание для объяснения свойств реальных газов (уравнение Ван-дер-Ваальса). [c.53]

    Выделяют следующие составляющие дальнодействующих сил ттритяжения между молекулами (сил Ван-дер-Ваальса) ориентационная составляющая ор индукционная составляющая ипд дисперсионная составляющая Идисп- [c.274]

    Силы Ван-дер-Ваальса (ориентационный, индукционный и дисперсионный эффекты). Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолеку лярным притяжением или силами Ван-дер-Ваальса . Они действуют в веществах, находящихся в газообразном или жидком состоянии, а также между молекулами в молекулярных кристаллах. Своа название они получили по имени голландского исследователя Ван-дер-Ваальса, постулировавшего их существование введением поправочного члена в уравнение состояния идеального газа. Эти силы обусловливают отступление реальных газов от идеального состояния. Кроме того, межмолекулярное притяжение определяет возможность агрегации вещества, сопровождающейся выделением энергии. Оно играет важную роль в процессах адсорбции, катали- [c.133]

    Силы притяжения между молекулами, которые называют ван-дер-еаальсовыми, обусловливаются тремя видами межмолекулярного взаимодействия 1) ориентационное — проявляется между полярными молекулами, стремяш,имися занять такое положение, при котором их диполи были бы обращены друг к другу разноименными полюсами, а векторы моментов этих диполей были бы ориентированы по одной прямой 2) индукционное — возникает между индуцированными диполями, причиной образования которых является взаимная поляризация атомов двух сближающихся молекул 3) дисперсионное — возникает в результате взаимодействия микродиполей, образующихся за счет мгновенных смещений положительных и отрицательных зарядов в молекулах при движении электронов и колебании ядер. Дисперсионные силы действуют между любыми частицами. Ориентационное и индукционное взаимодействие для частиц многих веществ, например Не, Аг, На, N2, СН4, не осуществляются. Для молекул ЫНз на дисперсионное взаимодействие приходится 50%, на ориентационное — 44,6 и на индукционное —5,4%. Полная энергия ван-дер-ваальсо-вых сил притяжения характеризуется невысокими значениями. Так, для льда она составляет 11 кДж/моль, т. е. 2,4% энергии ковалентной связи Н—О (456 кДж/моль). С ростом относительных молекулярных масс силы межмолекулярного взаимодействия становятся больше, поэтому повышаются значения таких постоянных, как температуры плавления и кипения. [c.123]

    Все рассмотренные выше виды взаимодействия молекул могут быть объединены под названием межмолекулярных сил (или сил Ван-дер-Ваальса ). Относительное значение каждого вида для того или иного случая зависит, в основном, от двух свойств взаИ модействующих молекул — их полярности и деформируемости. Чем выше полярность, тем значительнее роль ориентационных спл чем больше деформируемость, тем значительнее роль дисперсионных сил. Индукционные силы зависят от обоих факторов, но сами обычно играют лишь второстепенную роль. Как правило, основное значение для межмолекулярного взаимодействия имеют дисперсионные силы. [c.87]

    Силы Ван-дер-Ваальса. Очень слабые силы притяжения между нейтральными атомами или молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, называют межмолекулярпым притяжением или силами Ван-дер-Ваальса. Они действуют в веществах, находящихся в газообразном или жидком состоянии, а также между молекулами в молекулярных кристаллах. Ван-дер-ваальсово притяжение Имеет электрическую природу и рассматривается как результат действия трех эффектов — ориентационного, индукционного и дисперсионного  [c.98]

    Силы притяжения Ван-дер-Ваальса обратно пропорциональны шестой степени расстояния между атомами и, следовательно, быстро уменьшаются с его ростом. Они складываются из трех компонентов. Дисперсионные силы или силы Лондона действуют всегда. При сближении в молекуле двух связанных атомов внешние движущиеся электроны одного из них индуцируют во втором атоме диполь. Возникающий при этом потсициал является причиной возникновения дисперсионных сил. Они не направлены, и величина их возрастает по мере роста подвижности электронов, т. е. чем дальше последние от ядра. Поэтому дисперсионные силы между двумя атомами иода больше, чем между атомами фтора. Силы, ориентации диполя и индукционные силы действуют лишь в том случае, когда молекулы или их части обладают собственным дипольным моментом. [c.80]

    Наиболее подробно разработан механизм упорядочения структуры воды в модели Иомети и Шераги [16]. Согласно представлениям этих авторов, растворение углеводорода в воде сопровождается образованием частичного клатрата из молекул воды вокруг молекулы углеводорода (рис. 1). Так как при этом выпуклая поверхность почти сферического кластера становится вогнутой, то поверхностные молекулы воды могут образовывать максимальное число водородных связей с соседями — четыре. Кроме того, образуется дополнительный — пятый ван-дер-ваальсов контакт с молекулой углеводорода, т. е. молекула воды становится пентакоординированной. При этом понижается энергия молекул воды на величину (рис. 2). Размещение молекул углеводорода в районах несвязанной воды может происходить только заменой контактов вода — вода контактами вода — углеводород. При этом сильные дипольные взаимодействия заменяются на более слабые индукционные и дисперсионные и энергия несвязанных [c.12]

    Обычно энергия индукционного взаимодействия составляет не более 57о от общей энергии ваи-дер-ваальсового взаимодействия. Так же, как и уравнение (7), последнее соотношение может применяться только в случае, когда расстояния между частицами намного больше, чем их ковалентные радиусы. Необходимо рассматривать взаимодействие лишь между двумя атомными группами, находящимися на минимальном расстоянии, принимается во внимание диполь атомной группы или двух химически связанных атомов (диполь связи), поскольку суммарный дипольный момент молекулы относится к диполю, обладающему большим размером, чем ван-дер-ваальсов радиус атомной группы. Представления о значениях дипольных. моментов отдельных химических групп атомов может дать табл. 1.4. [c.16]

    Эти три диаметра, различные по самому своему определению (или способу измерения), естественно, отличаются от расстояний между ядрами связанных атомов, и значительно больше, чем эти расстояния. Величину dj можно найти из внутреннего трения газов, а также лз прстоянных Ван-дер-Ваальса 2 d() по Волю (Wohl, 1931) можно найти из так называемого второго вириального коэфициента уравнения состояния путем теоретического расчета сил притяжения на основании индукционного эффекта и учета сил отталкивания посредством некоторой экспоненциальной функции. Величина d j отвечает расстоянию [c.29]

    Дисперсионный эффект. Представление об ориентационном и индукционном взаимодействии позволило понять причины взаимного притяжения молекул в том случае, если все молекулы или часть их являются полярными. Но опыт показывает, что силы Ван-дер-Ваальса действуют между частицами и в тех случаях, когда они неполярны. Таковы, например, атомы инертных газов, электронные оболочки которых обладают сферической симметрией. С другой стороны, выяснилось, что даже в случае полярных молекул ориентационное и индукционное взаимодействие составляют лишь часть наблюдаемого на опыте ван-дер-ваальсова взаимодействия. Все это указывало на существование еш,е одной составляющей сил Ван-дер-Ваальса. Теория этого эффекта была развита Вангом [14] и в особенности Лондоном [15]. [c.64]


Смотреть страницы где упоминается термин Ван-дер-Ваальса индукционные: [c.314]    [c.258]    [c.68]    [c.70]    [c.152]    [c.66]    [c.346]    [c.128]    [c.138]    [c.184]   
Очерки кристаллохимии (1974) -- [ c.222 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса



© 2025 chem21.info Реклама на сайте