Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол чистота

    Для расщепления рацемических аминов нужны асимметрические реактивы кислотного характера. Выбор таких реактивов меиее богат по сравнению с используемыми для расщепления рацемических кислот (с помощью алкалоидов и синтетических оснований). Наиболее часто применяемым реактивом кислотного характера является (- -)-винная кислота. Типичный пример ее использования — получение оптически активного а-фенилэтиламина. Если смешать рацемический амин с (-4-)-винной кислотой в теплом метанольном растворе, то выпадает почти чистая диастереомерная соль, содержащая (—)-амин [38]. Если же вместо метанола в качестве растворителя использовать воду, то удается получить амин лишь незначительной оптической чистоты. Перед нами наглядный [c.98]


    Продукт метанол чистотой 99,8%. [c.97]

    Продукт метанол чистотой 99%. [c.98]

    Продукты. Можно получать метанол чистотой 99,85%. [c.105]

    Сырье метанол (чистотой 99%) и атмосферный воздух (без очистки). [c.190]

    При проведении процесса в среде метанола чистота полученной АГ-соли иногда не отвечает требованиям ГОСТ по температуре плавления (192—193 °С). В Советском Союзе разработан способ получения АГ-соли, отличающийся тем, что процесс ведут в среде 75- 0%-ного водного изопропилового спирта при 65—70 °С следую- [c.257]

    Большое влияние на рост производства метанола в США оказывает развитие новых производств на базе формальдегида. Так, например, намечается значительный рост потребности в формальдегиде для синтеза делрина — высококачественного полимера, заменяющего цветные металлы. Делрин был получен полимеризацией формальдегида высокой чистоты. Другим новым направлением использования формальдегида является получение на его основе мочевино-формальдегидных удобрений. Потребление формальдегида в этом производстве увеличилось с И тыс. т в 1959 г. до 22 тыс. тп в 1960 г. [c.25]

    Азеотропная ректификация отличается применением третьего компонента повышенной летучести, способного к образованию с одним из компонентов исходной смеси второго азеотропа с более низкой температурой кипения, чем исходный. Для рассматриваемого ниже примера промышленного извлечения толуола в качестве разделяющего агента принят водный раствор метилэтилкетона (МЭК). На такой установке чистота выделенного толуола достигает 99% и более. На других установках для тех же целей служит метанол. Технологическая схема процесса ректификации представлена на рис. 202. Для полного отделения толуола от неароматических углеводородов в колонну необходимо подавать в 2,8—3 раза больше МЭК, чем содержится неароматических углеводородов в исходной смеси. Содержание воды в МЭК не превышает 10%. Основная его масса отводится с головным продуктом колонны 1 и экстрагируется водой в колонне 2. Из водного раствора МЭК легко извлекается обычной ректификацией. Получаемый сверху регенерационной колонны 3 МЭК содержит около 10% воды и является разделяющим [c.327]

    Первые два расчета проведены при оо и концентрации метанола в кубовой жидкости Ю мол. %. При одинаковом выходе толуола 93,8% для получения конечного продукта чистотой 98,8% требуется 14 теоретических тарелок, а для получения 99,9%-ного продукта—18 тарелок. [c.243]

    Выделение ароматических углеводородов из нефтяных фракций может быть осуществлено также с помощью азеотропной ректификации. Бензол и толуол высокой степени чистоты могут быть выделены этим методом из смесей, содержащих непредельные и парафиновые углеводороды, с использованием в качестве разделяющих агентов ацетонитрила, метанола, этанола, изопропанола, ацетона, метилэтилкетона и уксусной кислоты [272]. Метанол был рекомендован также для выделения ксилолов [273]. Из числа указанных соединений наиболее эффективен, по-виднмому, ацетонитрил. В качестве разделяющего агента может применяться также пропионитрил [274]. В виде дистиллата отгоняются азеотропные смеси парафиновых углеводородов с нитрилами, расслаивающиеся после конденсации. Нижний слой, богатый нитрилом, возвращается в колонну в виде флегмы, а верхний слой, содержащий преимущественно парафиновые углеводороды, отбирается в качестве дистиллата, из которого углеводороды выделяются путем отгонки. [c.274]


    Уксусную кислоту получают при непрерывном взаимодействии метанола и монооксида углерода в каталитическом реакторе в гомогенных условиях при температуре ниже 200 °С и давлении менее 35 атм. Схема установки показана на рис. 1. Продукт представляет собой ледяную уксусную кислоту чистотой выше [c.291]

    На первых промышленных установках синтеза метанола использовался синтез-газ из кокса и угля [36]. В середине 50-х гг. развитие технологии риформинга с паром позволило использовать в качестве сырья нафту и природный газ. Однако нехватка этих видов сырья и рост цен на них вынудили использовать также тяжелые остатки нефтеперегонки. Поэтому для получения синтез-газа высокой чистоты, необходимого для использования высокочувствительных к ядам медных катализаторов [37] были разработаны соответствуюшие процессы промывки. [c.221]

    Метод фирмы I I позволяет получать метанол высокой степени чистоты (99,85%). [c.252]

    Метод был усовершенствован применением фронтального варианта [162]. Разделение стереоизомеров проводилось в колонке, заполненной смесью тиомочевины и толченого кварца, в качестве растворителя и элюента использовали 5 % раствор метанола в бензоле. Соотношение тиомочевины и разделяемой смеси составляло л 120 1, продолжительность опыта 100—120 ч. Переход к фронтальному варианту привел к повышению выхода индивидуальных стереоизомеров с 7—20 до 80 % и степени чистоты с 98 до 99,8 7о, как показано на примере разделения 1-метил-4-трег-бутилциклогексанов [163]. Важными преимуществами фронтального варианта являются возможность работы с малым количеством смеси (0,2 г вместо нескольких десятков граммов), применимость метода даже при д 1 5 и для стереоизомеров, аддукты которых нестойки в сухом виде, если только их устойчивости под слоем растворителя достаточно отличаются друг от друга. В работе [164] фронтальный тиомочевинный метод успешно применен для разделения экзо- и эндо-1,3-диметил бицикло [2,2,1]геп-танов. При разделении этой пары углеводородов, как и в ряду диалкилциклогексанов [165] в качестве общей закономерности отмечается, что низкокипящие стереоизомеры, независимо от их конфигурации, образуют менее устой чивые аддукты. В работе [166] определены с помощью моделей Стюарта — Бриглеба поперечные сечения молекул стереоизомерных диалкилциклогексанов и сопоставлены полученные данные с устойчивостью аддуктов с тиомочевиной. [c.78]

    Катализатором обычно служит медная сетка, которая при реакции разогревается до 550—600° (темно-красное каление). В медных трубах, наполненных катализатором, из смеси воздух—метанол (3 1 или 3 2) получают из 600 кг метанола до 120 кг формальдегида в виде 40% водного раствора (формалин). Стабилизация формальдегида достигается присутствием некоторого количества метанола. Длительность жизни медного катализатора зависит от режима работы, чистоты меди и применяемого метанола. Особенно вредны примеси свинца к меди и ацетона или карбонила железа к метанолу, что резко снижает выход формальдегида. [c.204]

    Простота получения, чистота и низкая себестоимость способствовали тому, что размеры производства синтетического метанола давно превзошли производство лесохимического метилового спирта. Основное количество метанола перерабатывают в формальдегид. Кроме того, его применяют как антифриз для автомобильных радиаторов, в качестве добавок к бензинам, как растворитель и т. д. О получении метанола окислением метана см. стр. 194. [c.715]

    Особое значение в условиях труда операторов по ремонту скважин имеет чистота воздуха на рабочем месте. Так как известно, что загрязнения атмосферы парами топлива, ртути, окисью углерода, метанолом, бензином может явиться причиной тяжелых отравлений, ухудшения работы органов зрения и слуха, нарушения координации движений, развития усталости, сонливости и др. При [c.152]

    Получаемые путем электролиза воды водород и кислород обладают достаточно высокой чистотой. В соответствии с ГОСТ 3022—80 концентрация водорода высшего сорта должна быть не менее 99,5% (об.) Водород является ценным сырьем, которое находит широкое и разнообразное применение в народном хозяйстве. Мировое производство водорода в настоящее время составляет свыше 30 млн. тонн в год, при этом более половины объема всего производимого водорода используется в производстве синтетического аммиака. Водород применяют также при синтезе метанола, в процессах гидрокрекинга и гидроочистки нефтепродуктов, при сварочных работах и в других процессах. В перспективе ожидается возрастание потребности в водороде для упомянутых производств, а также рост его потребления вследствие развития новых областей промышленности. [c.20]

    Исследования на опытно-промышленной уставовке [46] процесса депарафинизации кристаллическим карбамвдом в растворе фракции бензина 80—120 °С в присутствии активатора — метанола показали возможность получения дизельного топлива с температурой застывания от —35 до —45 °С и парафина, содержащего 2—3% (масс.) ароматических компо-нентов. Комплекс отделяют центрифугированием. Полученные данные послужили основой для создания установки производительностью 500 тыс. т/сут по сырью, которая пущена в эксплуатацию. Парафин высокой степени чистоты получен [47] с использованием одного раствора карбамида и смесей дихлорэтана с бензином и сжиженными углеводородными газами. Различные варианты технологических схем карбамидной депарафинизации описаны в монографии [32]. [c.209]


    Традиционные технологии синтеза метанола несовершенны вследствие низких конверсий синтез-газа в метанол, невысокой чистоты получаемого целевого продукта, больших энергозатрат, связанных с необходимостью организации рецикла по непро-реагировавшему синтез - газу. Традиционные технологии получения синтез-газа из природно] о газа также характеризуются большими капитальными и энергетическими затратами. [c.70]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Третичные гидроксильные группы лимонной кислоты, этилци-трата и бензиловой кислоты этерифицировались соответственно в количестве 35, 44 и 47%. (Судя по данным титрования бензиловой кислоты стандартным раствором метилата натрия в метаноле, чистота продукта была равна 99,4%.) [c.283]

    Метод по.чучения катализаторов, аппаратура и методика проведения эксперимента описаги. м работе [2]. Исходными реагентами служили толуол особой чистоты и метанол, очищенный по методике [3]. Их физико-химиче- [c.323]

    Экстракция ароматических углеводородов из дизельных масел производится также и фурфуролом [84] при температуре выше температуры окружающей среды (60—80 °С). При промывании фурфуролом смесей, полученных путем крекинга газовых масел, кроме ароматических углеводородов, удаляются также металлические конгломераты и соединения серы [73, 76]. Третьим растворителем, применяющимся в промышленном масштабе для вымывания ароматических углеводородов из легких продуктов пиролиза, является водный раствор диэтиленгликоля. Эта экстракция, известная под названием метод Удекс [70, 71, 73, 76, 94, 951, впервые была применена Б 1950 г. В качестве новых растворителей был испытан ряд различных жидкостей, в том числе -цианэтиловый эфир [88], азеотроп-ная смесь углеводородов с цианистым метилом, комплекс фтористого бора с кислородными соединениями, фтористый водород [100] и т. д. Для выделения из продуктов пиролиза нефти толуола высокой чистоты пригодна вода [67]. Для удаления ароматических углеводородов из керосиновой фракции пригоден раствор 75—99,9% метанола [851 и жидкий аммиак [87]. [c.402]

    Расходные показатели. Процесс характеризуется высокими технико-экономическими показателями. В зависимости от конверсии изобутилена и чистоты выделяемого МТБЭ расходные показатели несколько различаются в основном по расходу электроэнергии и пара. Например, фирма Snamprogetti-ANI на установке мощностью 100 тыс. т/год на производство 1 т МТБЭ расходует метанола 370 кг бутилена (50% изобутилена) 1280— 1359 кг оборотной воды 32—42 м пара 450—720 кг электро-эиерги[[ 1С—13 кВт-ч кятализатора на 0,3 долл. [c.192]

    Для окончательной очистки от побочных продуктов и получения диметилтерефталата высокой чистоты (99,9%) сырой продукт из сборни1са 15 подвергают двух-трехступенчатой перекристаллизации из метанольных растворов. Для этого его растворяют в метаноле при 100 °С в автоклавах 16 и 18, отфильтровывают, промывают и отжимг ют на центрифугах 17 и 19. При этом фильтрат от последующей стадии кристаллизации используется как растворитель для предыдущей, а фильтрат от первой стадии направляется в испаритель-перегреватель 6 и далее на этерификацию. Суммарный выход диметилтерефталата с учетом всех потерь составляет 85—90%. [c.401]

    Кснденсат с ннза сепаратора дросселируют до давления, близкого < атмосферному, и в ректификационной колонне 9 отделяют метанол от растворенных газов и летучих продуктов (диметиловый эфир), которые идут на сжигание. В следующей ректификационной К0Л01 ке 10 отгоняют метанол от небольшого количества тяжелых прим1 сей (высшие спирты), которые также направляют на сжигание. Полученный товарный метанол имеет высокую степень чистоты (до 99,95% основного вещества) и получается с общим выходом ,о 95% при учете всех потерь. [c.531]

    Для испытаний взяли МТБЭ 99,8%-ной чистоты он был получен взаимодействием изобутилена с метанолом, имел относительную (плопность 0,7375, выкипал в пределах 52—62° С и содержал 0,2% воды. Были приготовлены два образца неэтилированного бензина АИ-93 и один этилированный, содержащие от 7 до 11 % МТБЭ. В качестве базовых компонентов использовали бензины каталитического риформинга обычного и жесткого режима, каталитического крекинга и прямой перегонки (табл.1). [c.94]

    Для азеотропной смеси коэффициент относительной летучести а = 1, так как концентрации каждого из компонентов в жидкой (хх) и паровой (у у) фазах одинаковы (рис. 29). Азеотропную смесь можно разрушить, добавляя к ней третий компонент, который образует азеотропную смесь с одним из компонентов разделяемой смеси. Нанример, толуол можно выделить из катализата риформинга добавлением метанола, который образует азеотропную смесь с неароматическими компонентами катализата. Последовательно двукратно добавляя в разделяемую смесь метанол, удается получить толуол чистотой свыше 99%. Отогнавшийся вместе с парафино-нафтеновой частью катализата метанол легко отделяется водной промывкой конденсата, отстаиванием водного раствора метанола и последующей регенерацией последнего отгонкой от воды. Метанол используют также для выделения из катализатов риформинга технического ксилола (смеси изомеров ксилола и этилбензола — углеводородов С Ню)- [c.49]

    Азеотропную перегонку этой смеси нужно проводить на колонке с хорошим погоноразделением (около 20 теоретических тарелок) или в две ступени сначала перегнать исходную смесь, а затем остаток первой разгонки с добавлением дополнительного количества уводителя (третьего компонента). О чистоте разделения можно судить по показателям преломления, которые очень различны для ароматических, неароматических углеводородов и метанола для толуола 1,4969 для бензина (деароматизирован-ного) в среднем 1,4000—1,4300 для метанола 1,3286. Характерна также высокая плотность ароматических углеводородов. [c.50]

    Установка сооружена на Грозненском нефтеперерабатывающем заводе по проекту Гипрогрозпефти. Целевое назначение — выработка низкозастывающего дизельного топлива. Карбамид используется в кристаллическом состоянии, в качестве активатора применяется метанол, в качестве разбавителя и промывного агента — фракция бензина 70—110° С. Основной особенностью установки является применение отстойно-промывочных центрифуг ОПШ-3 и ГПШ-ЗВ2 (производительность 12—16т/ч промытого комплекса), в которых осуществляются отделение комплекса от жидкой фазы (или отделение кристаллов карбамида от раствора парафинов) и промывка бензином твердой фазы. К другим особенностям установки следует отнести высокую степень чистоты получаемых н-парафинов, что достигается смешением комплекса с бензином и повторным центрифугированием относительно небольшой расход бензина благодаря предусмотренной в схеме подаче на комплексообразование бензина, отделяемого на центрифугах, и подаче на циркуляцию в первой ступени центрифугирования раствора депарафината в бензине, а на вторую ступень центрифугирования — раствора парафинов в бензине непрерывное комплексообразование и разрушение комплекса очистку карбамида от адсорбирующихся на его поверхности смолистых веществ, от продуктов коррозии и других посторонних примесей, что достигается перекристаллизацией карбамида в специальной секции применение карбамида и комплекса во взвешенном состоянии. [c.140]

    Рассмотрим в качестве примера определение оптической чистоты частично расщепленного (4-)-а-фенилэтиламина, имеющего [аЬ + 22,6° (с 8,6 в метаноле). В качестве реагента был использован хлорангидрид оптически чистой 0-ме-тилминдальнои кислоты. Образовавшийся амид [c.164]

    Интересные данные были получены при изучении оксимер-курирования оптически активного гранс-циклооктена 84]. Реакция эта идет по схеме трансоидного присоединения, причем оптическая чистота продукта реакции зависит от растворителя в метаноле она составляет 98%, в хлористом метилене 5%  [c.463]

    Полученный синтез-1 аз, содержащий азог, направляется в систему трёх последовательно соединённых реакторов После каждого реактора конденсацией выделяется произведённый метанол Общая конверсия синтез-газа в целевой продукт 65 — 75 % Полученный метанол-сырец высокой степени чистоты, содержание метанола в нём 97,5 — 99,0 мае %. При производстве метанола на каждую тонну метанола вырабатывается 0,7 т пара с технологическим параметром 35 атм. Хвостовые газы узла синтеза метанола обладают теплотворной способностью, достаточной для выработки дополнительногх количества электроэнергии в газовых турбинах Общее количество произведенной э гек1роэнергии обеспечивает энергозамкнутость процесса получения метанола из природного газа [c.56]

    Абсолютный метиловый спирт. Синтетический метанол отличается пысокой степенью чистоты, но может содержать до [c.57]


Смотреть страницы где упоминается термин Метанол чистота: [c.192]    [c.102]    [c.267]    [c.120]    [c.12]    [c.577]    [c.29]    [c.177]    [c.126]    [c.395]    [c.27]    [c.164]    [c.70]    [c.303]    [c.26]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.333 ]




ПОИСК







© 2025 chem21.info Реклама на сайте