Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формальдегид стабилизация

    Технологический процесс производства полиформальдегида по непрерывному методу состоит из следующих стадий подготовка формалина, получение и очистка газообразного формальдегида, полимеризация формальдегида, ацетилирование полиформальдегида, промывка и сушка полиформальдегида, стабилизация и грануляция. [c.48]

    Трубчатые реакторы. Стабильность процесса в трубчатом реакторе определяется в основном величиной внутреннего диаметра трубки (ВДТ), При увеличении ВДТ конструкция реактора становится проще и возможно увеличение его мощности, но при этом ухудшается стабильность аппарата, выражающаяся, например, в увеличении параметрической чувствительности и величины динамического заброса [37, 38]. Решающими факторами при выборе максимального ВДТ для экзотермических процессов являются параметрическая чувствительность, динамические характеристики, допустимое гидравлическое сопротивление слоя катализатора, избирательность процесса п точность стабилизации входных параметров, которые определяются из анализа стационарных и нестационарных процессов в трубках разного диаметра. Для процессов эндотермических и протекающих вблизи равновесия определяющими параметрами являются, как правило, гидравлическое сопротивление и мощность аппарата. Максимальные значения ВДТ для процессов окисления метанола в формальдегид — 25 мм, окислительного дегидрирования н-бутенов — 21 мм, синтеза винилхлорида при концентрированном ацетилене — 55 мм и разбавленном — 80 мм [38], дегидратации <к-окси- [c.14]


    При синтезе по второму способу (катионная полимеризация триоксана) операции по очистке мономера существенно упрощаются. Одна из причин этого — значительно меньшая гигроскопичность триоксана по сравнению с формальдегидом. Стабилизация поли- [c.252]

    Меднение. В качестве восстановителей применяют формальдегид, гидразин, гипофосфит [51 ]. Широко распространены растворы с формальдегидом. Для химического меднения используют растворы, содержащие в качестве комплексообразователя калий, натрий виннокислый или глицерин. Составы этих растворов могут быть следующими тартратный раствор — 5—50 г/л сернокислой меди, 7—50 г/л гидроокиси натрия, 25—170 г/л калия, натрия виннокислого, 10—100 мл/л 40 %-ного формалина глицериновый раствор — 14—100 г/л сернокислой меди, 30—100 г/л глицерина, 10—100 г/л гидроокиси натрия, 6—50 г/л формалина. Растворы могут содержать 4—30 г/л углекислого натрия. Как правило, растворы готовят перед употреблением. Для стабилизации растворов вводят серосодержащие добавки распространены тиомочевина, тиосульфат натрия (1—10 мг/л). Выбор химических [c.43]

    Наряду с этим отмечается, что небольшие добавки формальдегида помимо дезинфицирующего, оказывают общее улучшающее действие, повышая эффективность стабилизации крахмалом, особенно при повышенных температурах. Видимо, это связано как с ингибированием термоокислительной деструкции, так и с модифицирующей способностью формальдегида. Повышающими термостойкость добавками являются также фенольные реагенты, окисленный лигнин, лигносульфонаты. [c.179]

    В присутствии воды формальдегид склонен к полимеризации, поэтому для стабилизации растворов часто в них добавляется метиловый спирт, что необходимо учитывать прн выборе конструкционных материалов, [c.850]

    Если добавка катализатора действует на процесс ускоряюще, то явление называют положительным катализом, при замедлении (торможении) реакции—отрицательным катализом. Большинство каталитических реакций протекает с ускорением, и лишь в последние годы повысилось значение реакций торможения. К реакциям торможения относятся, например, стабилизация раствора формальдегида добавками метанола, стабилизация хлороформа добавками [c.21]

    Катализатором обычно служит медная сетка, которая при реакции разогревается до 550—600° (темно-красное каление). В медных трубах, наполненных катализатором, из смеси воздух—метанол (3 1 или 3 2) получают из 600 кг метанола до 120 кг формальдегида в виде 40% водного раствора (формалин). Стабилизация формальдегида достигается присутствием некоторого количества метанола. Длительность жизни медного катализатора зависит от режима работы, чистоты меди и применяемого метанола. Особенно вредны примеси свинца к меди и ацетона или карбонила железа к метанолу, что резко снижает выход формальдегида. [c.204]


    Некоторые гетероцепные полимеры деполимеризуются при нагревании с довольно высоким выходом. Так, полиметиленоксид деполимеризуется с образованием формальдегида, а при нагревании целлюлозы в вакууме при 100 С удается получить с хорошим выходом 1,6-ангидро-глюкозу. Тепловое воздействие играет большую роль и при других видах деструкции полимеров, повышая скорость, например, химической деструкции, механохимических процессов. Поскольку в условиях эксплуатации полимеров обычно протекает не термическая, а термоокислительная деструкция, то принципы стабилизации в этом случае ничем не отличаются от стабилизации полимеров к окислительной деструкции. [c.290]

    Предшественниками муравьиной и уксусной кислот в атмосфере являются органические соединения самых различных классов. Механизмы образования кислот из этих предшественников существенно отличаются друг от друга. В одних случаях реакция идет через образование на промежуточной стадии альдегидов (например, формальдегида из метана), а в других кислоты выступают как продукты стабилизации радикалов и бирадикалов (см. разд. 5.5.3). [c.211]

    В растворе формальдегида возможна примесь муравьиной кислоты, которая может образовываться при получении формальдегида. Поэтому ГФ X устанавливает допустимый предел кислотности в препарате, а для предупреждения возможных окислительно-восстановительных процессов и для стабилизации препарата к нему добавляют метиловый спирт (не более 1%). [c.178]

    Третий, более обычный в этом случае, путь стабилизации карбкатиона состоит в атаке его формальдегидом и замыкании в гетероциклическое соединение — замещенный 1,3-диоксан  [c.271]

    Основными стадиями технологического процесса производства ПМО (рис. IX. 1) являются получение чистого формальдегида, полимеризация, ацетилирование полимера, промывка, сушка, стабилизация и грануляция. [c.143]

    Окончательную стабилизацию полимера проводят путем добавки аминов или полиамидов, связывающих формальдегид, в двухлопастном смесителе 22, например, при следующем соотношении компонентов ч. (масс.)  [c.145]

    Рассматривая денатурацию протеинов, мы остановили на ней особое внимание ввиду важности ее для техники. Выше уже указывалось, что при получении пластических масс из белковых веществ дело не ограничивается одной пластикацией. Кроме того необходимо перевести протеины из лабильного состояния в стабильное. Для этого необходимо, во-первых, ограничить гидрофильность протеинов и, во-вторых, сделать их инертными по отношению к ферментам. Первое условие, ограничение гидрофильности, легко достигается различными способами денатурации, однако при этом доступность протеинов воздействию ферментов во многих случаях не уменьшается, а в некоторых, например при денатурации нагреванием, даже увеличивается. Надежным способом стабилизации протеинов с выполнением обоих условий является способ денатурации альдегидами. Поэтому в технике пластических масс и пользуются для обработки пластического материала раствором формальдегида. [c.30]

    По схеме (рис. 58) получения полиформальдегида [21] газообразный мономерный формальдегид (см. гл. 6) непрерывно подается в реактор 1, снабженный мешалкой, обратным холодильником и охлаждающей рубашкой. Сюда же поступает ОД—0,2% раствор катализатора — стеарата кальция в уайт-спирите. Процесс проводится при 40—50 °С. Полученная суспензия полимера собирается в приемник 3, откуда направляется на центрифугу 4. Растворитель с катализатором возвращается в реактор 1, а свежий гомополимер поступает в реактор ацилирования 5, аналогичный реактору 1. В реакторе 5 происходит обработка полимера уксусным ангидридом в присутствии ацетата натрия и пиридина в среде уайт-спирита при 135—140 °С, в течение 3—4 ч. Суспензия диацетата гомополимера поступает в сборник 6 и, далее, в центрифугу 7. Растворенные в уайт-спирите реагенты возвращаются в реактор 5, а отжатый полимер поступает на промывку в аппарат 8. Промытый порошок направляется на вакуум-сушилку (70 °С, 24—48 ч, 8—21 кПа). В смесителе 10 происходит стабилизация полимера смесью полиамида и диоксида титана(IV). Заключительная операция — грануляция порошка. [c.194]

    Для стабилизации полиформальдегида (с блокированными концевыми группами) против термоокислительной деструкции применяются смеси, состояш,ие из акцептора формальдегида (полиамид, карбамид и др.) и антиоксидантов (бисфенолы, ароматические амины, диамины и др.). [c.399]

    По одному из них в абсорбере поглощают как формальдегид, так п непревращенный метанол, который содержится в продуктах реакции в количестве, как раз достаточном для стабилизации формальдегида. В этом случае верхнюю тарелку абсорбера охлаждают рассолом, а колонна 7 служит лишь для санитарной очистки газа, в то время как для получения безметанольного формалина (требуемого иногда для ряда целей) необходима установка для отгонки метанола. [c.476]

    Метанол, содержащий 10% воды, из напорного бака 1 поступает в испаритель 2, обогреваемый горячей водой или паром из холодильника реактора 6. В испаритель подается также очищенный от пыли воздух, барботирующий через слой метанола. Образовавшаяся паровоздушная смесь освобождается от брызг в брызгоуловителе 3 и через перегреватель 4, обогреваемый также горячей водой из холодильника реактора 6, подается в реактор 5, в верхней части которого находится катализатор. Продукты реакции быстро охлаждаются для предотвращения распада формальдегида в подконтактном холодильнике 6 и направляются в абсорбер 7, орошаемый водой. Образовавшийся в абсорбере 37% -ный раствор формальдегида (формалин), содержащий для стабилизации 7—12% метанола, охлаждается в холодильнике 8 и поступает в сборник формалина 9. Непоглощенные газы проходят санитарную башню 10 и вакуум-компрессором 11 подаются в водоотделитель 12, после чего выбрасываются в атмосферу. [c.297]


    Наличие ещё одной двойной связи в цнклододекатриенах существенным образом сказывается на составе продуктов реакции [15-17] Промежуточные карбокатионы, образующиеся при атаке двойных связей протонированным формальдегидом или его производными, могут стабилизироваться в зависимости от строения исходного соединения и условий проведения реакции, как с образованием 1,3-диоксанов, так и в результате трансанулярной циклизации или депротонирования. Зачастую указанные способы стабилизации карбокатиона реализуются в одних и тех же условиях, приводя к сложной смеси продуктов реакции. [c.19]

    Смола для эмальлака метальвин представляет собой поливинилформаль. Для ее получения берут также водный раствор поливинилового спирта (концентрация со8%). Ацеталируют формалином (количество формальдегида 30—40% по массе от поливинилового спирта) в присутствии контакта Петрова (катализатор). Температура ацеталирования 93—95° С, продолжительность 6—7 ч. Во время реакции поливинилформаль постепенно выпадает в виде твердых частиц. По окончании процесса готовый продукт многократно промывают водой до нейтральной реакции. После отсоса воды поливинилформаль отрабатывают водным раствором триэтаноламииа для повышения устойчивости при хранении (стабилизации), отжимают в центрифуге и сушат при 40—45° С. Степень замещения гидроксильных групп при получении поливинилформаля меньше, чем при получении винифлекса. Содержание формальных групп в расчете на поливинилформаль 68—72% по массе. [c.165]

    Не менее существенное влияние на кинетику процесса конденсации фенола с формальдегидом оказывает метанол, в силу ряда причин неизбежно присутствующий в тех пли иных количествах в составе реакционной смеси. Эти причины состоят в следующем во-первых, вследствие того, что при производстве формальдегида в качестве исходного сырья используют метанол, последний всегда попадает, пусть в небольших количествах, в состав конечного продукта во-вторых метанол образуется — особенно интенсивно в щелочной среде — в результате диспропорционнрования (реакция Канниццаро) наконец, в-третьих, метанол вводят в концентрированные водные растворы формальдегида для их стабилизации за счет образования гемиформалей (3.4) — обрыв цепи препятствует образованию выпадающего в осадок малорастворимого полимера. Днформали в этих условиях (в нейтральной или слабокислой среде) не образуются. [c.45]

    На практике этот процесс осуществляется в аппаратах мепрерыпно-го действия [45, 60], поэтому раствор гексогена вливается одновременно с разбавляющей его водой в аппарат, заполненный разбавленной кислотой. Полученная в результате разбав.леиия 50—60%-ная отработанная кислота нестабильна, так как содержит легко окисляющийся в этих условиях формальдегид. Для повышения стойкости отработанную кисюту нагревают до 60—65 , прн этой температуре формальдегид полностью окисляется до СОа. В производстве стабилизация отработанной кислоты путем нагревания производится одновременно с разбавлением ее водой [61]. [c.263]

    Наши опыты показали, что даже сравнительно пизкоконденси-рованные продукты обеспечивают стабилизацию буровых растворов, содержащих соль и до 1% хлористого кальция. Получение реагента проходит в две стадии сначала конденсация избытком формальдегида до образования триметилолмеламина, затем этерификация сульфитом или бисульфитом натрия до получения водорастворимой смолы с активными сульфогруппами, гидроксилами и реакционноспособным водородом. Щелочью доводят pH реагента до 8 [51]. [c.200]

    Для стабилизации сухую частично разрушенную древесину прогаиы-раствором триметилбората в метиловом спирте в автоклаве с пере- иным давлением (для лучшего проникновения) и после высушивания тения растворителя) обрабатьшают парами формальдегида. Взаимо-1ствие целлюлозы, входящей в состав клеточных стенок древесины, с риметилборатом и с альдегидом приводит к образованию в древесине разветвленной полимерной сетки, благодаря чему восстанавливается ее механическая прочность и снижается водопоглощение. [c.123]

    Роль метанола, как и других спиртов, в стабилизации водных растворов, заключается в блокировании концевых групп полимерных молекул и в предотвращении образования нерастворимых полиоксиметиленов чрезмерно высокого молекулярного веса. Имеется большое число патентов по применению в качестве стабилизирующих добавок различных ПАВ, в основном относящихся к классу сложных аминов (гуанамин, бетаин, триазин и т. д.), либо к кислородсодержащим полимерам (поливиниловый спирт, поливинилацетат, целлюлоза и ее производные и пр.). Однако, как и метанол, эти добавки эффективно действуют лишь при концентрации формальдегида не выше 40—50%. Попытки применения многих из рекомендованных в патентах препаратов для стабилизации растворов с содержанием формальдегида 70— 80% и выше успехом не увенчались. [c.26]

    Кайзер и Сиссонс [56 ] наблюдали аналогичное явление на полиэтиленгликоле-400 и показали, что эта жидкая фаза в том виде, в каком она выпускается в продажу, содержит примеси формальдегида и муравьиной кислоты. При прохождении спирта через колонку происходит этерификация муравьиной кислоты. Указанные затруднения могут быть устранены путем стабилизации полиэтиленгликолевой насадки при 100° С и давлении 1 мм рт. ст. в течение 8 часов. [c.147]

    Карбонильные соединения также представляют собой кислоты, сил а которых может быть еще более повышена посредством электрофильных катализаторов. Так, из формальдегида при действии крепкой серной кислоты промежуточно образуется оксиметилен-катион, который гладко присоединяется к олефинам (реакция Принса). Аналогичная реакция с реакционноспособным изобутиленом представляет определенный технический интерес как путь получения изопрена. Стабилизация промежуточно образовавшегося в первой стадии иона карбония происходит в этом случае посредством элиминирования протона в циклическом переходном состоянии, изображенном ниже. Таким образом, стехиометрическим результатом является реакция конденсации. Образовавпп1Йся ненасыщенный спирт может, кроме того, реагировать далее с формальдегидом. В результате, помимо полуацеталя, образуется [c.390]

    В последующих исследованиях [35] было показано, что ион тропилия образуется при отрыве атома галогена из тех замещенных бензилгалогенидов, у которых заместителем в кольце является фтор, метильная или гидроксильная группы. Для объяснения количественных различий в масс-спектрах о- и п-мето-ксибензилгалогенидов по сравнению с соответствующим мета- изомером была высказана гипотеза [23, 35], что у этих соединений, ион, образующийся при элиминировании атома галогена, сохраняет бензильную структуру. Из трех изомерных ионов ме-токсибензила а, б ив для двух первых возможна резонансная стабилизация путем образования хиноидных структур а и б. Для иона л(-метоксибензила в такая стабилизация невозможна. Все три указанные иона далее элиминируют формальдегид с образованием иона rHf с т е 91, имеющего структуру иона тропилия [23, 25]. [c.230]

    Образование коллоидных растворов металлического-золота под действием восстановителей. В качестве восстановителей употребляют хлористое олово [182, 291], бромистое олово [242], различные фенолы [292], галловую кислоту [293], аскорбиновую кислоту [294], перекись водорода [295], формальдегид [296] и т. п. Для стабилизации коллоидов часто добавляют жачатину или крахмал. Окраска коллоидных растворов золота зависит от степени дисперсности металла и определяется природой восстановителя, коицантрацией электролитов и кислотностью растворов. Так, в кислой среде цвет золя может быть желтым, зеленым, фиолетовым, красным, розовым, а в щелочной среде — фиолетовым, синим или красным. [c.185]

    Формование волокна из полученного полимера, обладающего преимущественно линейной и атактической структурой, ведут мокрым способом из водного раствора, применяя в качестве осадительной ванны раствор сульфата натрия. Свежесформованное волокно вытягивают, сушат и подвергают термообработке. При этом оно становится нерастворимым в воде, что, по-видимому, обусловлено образованием большого числа водородных связей (как это имеет место в целлюлозе). Однако такое волокно все еще может давать усадку в горячей воде, и для окончательной стабилизации его необходимо обработать формальдегидом с целью образования циклических формальных групп и поперечных связей [c.343]


Смотреть страницы где упоминается термин Формальдегид стабилизация: [c.156]    [c.550]    [c.16]    [c.247]    [c.265]    [c.148]    [c.129]    [c.465]    [c.277]    [c.432]    [c.120]    [c.112]    [c.220]    [c.47]    [c.119]    [c.343]    [c.524]   
Общая химическая технология органических веществ (1966) -- [ c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте