Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактор конверсии углеводородов

    Начальное давление процесса перед реактором конверсии углеводородов равно 2,3—2,5 МПа, а давление на выходе из последнего аппарата составляет 1,6—1,8 МПа. Гидрогенизационные процессы на НПЗ осуществляются при давлении 4—15 МПа, поэтому на установке производства водорода имеются компрессоры 24, сжимающие водород до давления, требуемого потребителю. [c.130]

    Основную стоимость установки составляют оборудование, КИП, система автоматического регулирования, трубопроводы. Приблизительно 25% капитальных вложений составляет стоимость трубчатых печей с системой утилизации тепла и производства пара. Значительная доля приходится на стоимость трубчатых реакторов конверсии углеводородов, изготовленных из хромоникелевой стали. Реакторы очистки от сернистых соединений, конверсии окиси углерода и метанирования, работающие при 2,0—2,5 МПа и 400 —500 °С, также довольно дороги. [c.196]


    Исследование процесса конверсии жидких углеводородов проводили на пилотной установке, принципиальная схема которой представлена на рисунке. Основным аппаратом установки является конвертор 6, заполненный катализатором. Его можно рассматривать как элемент трубчатого реактора конверсии углеводородов. [c.104]

    Моделирование и расчет реактора конверсии углеводородов. 94 Каталитическая конверсия нафты под давлением [c.5]

    Моделирование и расчет реактора конверсии углеводородов [c.94]

    Паровую конверсию углеводородов следует вести, избегая осаждения углерода на катализаторе, способствующего его разрушению и увеличению гидравлического сопротивления в реакторе. Для предотвращения этого процесса следует поддерживать некий минимальный расход водяного пара в процессе паровой конверсии углеводородов. Теоретически этот расход не должен быть ниже 2 1. Однако для улучшения теплопередачи на практике подают до 4—5 м пара на конверсию 1 м метана. [c.62]

    Полученная парогазовая смесь поступает в печь паровой конверсии 8. Собственно процесс паровой конверсии углеводородов проходит в вертикальных трубчатых реакторах, заполненных катализатором и размещенных в радиантной секции печи в один, два или несколько рядов, закрепленных только внизу [c.62]

    Для уменьшения неизбежного в этих условиях сажеобразования в реактор вместе с сырьем вводят ацетаты никеля, калия и магния. Полученный газ направляют на вторую ступень процесса, где на стационарном нанесенном хромовом катализаторе достигается полная конверсия углеводородов и сажи с паром и кислородом. Возможен и одноступенчатый процесс парокислородной конверсии тяжелого нефтяного сырья на стационарном хромовом катализаторе при температуре 1450° С. Сажа, образующаяся в лобовых слоях катализатора, полностью газифицируется в хвостовых слоях примененного контакта. Этот процесс проводят под давлением 30 атм. [c.53]

    В качестве источника энергии при производстве водорода и аммиака наряду с рекуперированным теплом водяного пара, дымовых и технологических газов используют парогазовый цикл. Это улучшает показатели процесса на 2—7%. Внедрение парогазового цикла приводит к изменению аппаратурного оформления процесса конверсии углеродов. Для этого шахтный реактор заменяют совмещенным аппаратом с топкой под давлением. В совмещенных аппаратах конверсию углеводородов можно проводить как в стационарном, так и в кипящем слое катализатора. [c.208]


Рис. 28, Реакторы для каталитической конверсии углеводородов Рис. 28, Реакторы для <a href="/info/157903">каталитической конверсии</a> углеводородов
    На рис. 29 приводится схема получения технического водорода конверсией природного газа с водяным паром в трубчатых печах при низком давлении [50, 89]. Сероводород удаляют в абсорбере / 20%-ным раствором ди-этаноламина. После абсорбера 1 газ смешивается с небольшим количеством водяного пара, нагревается до 450—460° С и направляется в адсорбер < , заполненный бокситом, где сероорганические соединения превращаются в сероводород. Сероводород из газа удаляют промывкой раствором моноэтаноламина в аппарате 5, затем газ поступает в печь конверсии углеводородов 7, в которой трубы (реакторы) расположены в два ряда. [c.125]

    С помощью перечисленных выше уравнений и таблиц методом последовательного приближения на электронно-вычислительных машинах производится расчет условий протекания реакции паровой конверсии углеводородов для современных схем производства водорода. В связи с тем, что в реальных условиях равновесие реакции конверсии СН4 паром не достигается, для практических расчетов принимается по температуре, более низкой, чем температура на выходе из реактора. При проведении процесса под давлением 2— [c.70]

    Паровую конверсию углеводородов ведут таким образом, чтобы на катализаторе не осаждался углерод. Осаждение углерода на катализаторе может привести к его разрушению и увеличению сопротивления слоя катализатора в реакторе. Поэтому одновременно с описанными вьшге расчетами проводят также расчеты термодина-1 шческого равновесия реакций возможного образования углерода в системе по одной из следующих реакций  [c.70]

    Процесс паровой конверсии углеводородов проводят с подводом тепла через стенку реактора. Количество подводимого тепла можно определить после того, как рассчитаны выход и состав конвертированного газа. Расчет ведут на основании первого закона термодинамики по уравнению теплового баланса  [c.71]

    Наиболее радикальным решением проблемы конверсии гомологов метана следует признать двухступенчатый процесс паровой конверсии. На I ступени процесс ведется в- адиабатическом реакторе при 450—520 °С с получением газа, содержащего преимущественно метан. На II ступени проводят полную конверсию метана в реакционных трубах с внешним обогревом с использованием известных, хорошо зарекомендовавших себя катализаторов. В последние годы для частичной конверсии углеводородов разработаны высокоэффективные стойкие катализаторы. [c.82]

    В реальных условиях ведения процессов паровой конверсии углеводородов и паро-кислородной газификации мазута, когда температура реакции превышает 800 °С, практически достигается равновесие реакции конверсии окиси углерода, и концентрация СО в газе, поступающем на конверсию, обычно отвечает равновесной для максимальной температуры конверсии углеводородов или газификации [49, 50]. В отдельных случаях наблюдается более низкое содержание СО, что может иметь место, если реакция протекает при более низкой температуре в коллекторах и коммуникациях после выхода газа из труб печи конверсии углеводородов или агрегата газификации. Обычно этот эффект незначителен ввиду краткого времени пребывания газа в системе перед реактором конверсии СО. [c.88]

    Общие принципы конструирования. Процесс паровой конверсии углеводородов ведут в вертикальных трубчатых реакторах, заполненных катализатором и размещенных в печи для обеспечения внешнего обогрева. Внутренний диаметр реакционных труб на установках, работающих нри 1,2—2,5 МПа, составляет 90—130 мм при толщине стенки 16—20 мм. Высота реакционных труб 10—14 м. На установках, работающих нри низком давлении (до 0,3 МПа), используют трубы большего диаметра (130—200 мм), меньшей толпщны (8— [c.141]

    Все реакторы, за исключением реактора низкотемпературной конверсии окиси углерода и метанирования, разогревают инертным газом до 350 °С со скоростью 30—50 °С в час. Одновременно подают воду в котлы-утилизаторы. При температуре циркулируюш его газа на выходе из печи 350 °С в реакционные печи подают перегретый пар, предварительно нагретый до 450—480 °С. После подачи перегретого пара в печь скорость подъема температуры дымовых газов увеличивают до 100 °С в час, чтобы быстрее достичь рабочей температуры в реакционных трубах. Расход перегретого пара доводят до рабочего и в систему подают исходный газ. Содержание водорода в исходном газе в этот период должно быть пе менее 50%. Отношение пар газ поддерживается равным 10 1. После подачи исходного газа в реакционные трубы приступают к восстановлению катализаторов конверсии углеводородов и высокотемпературной конверсии окиси углерода. Конвертированный газ проходит блок карбонатной очистки от СО 2 и сбрасывается на факел. [c.183]


    Паро-кислородная конверсия метана. Основное количество водорода для синтеза аммиака производится в настоящее время паро-кислородной или наро-воздуш-ной конверсией углеводородов, обычно природного газа, главным компонентом которого является метан. Конвертируемая смесь горючего, кислорода и водяного пара пропускается через контактный аппарат с насадкой из гранул никелевого катализатора. Реактор диаметром [c.77]

    Некоторые установки, в особенности те, которые расположены после циклических реакторов риформинга углеводородов, работают с исходными газами, содержащими следы ацетилена и окиси азота. Это приводит к образованию смолы с высоким содержанием углерода, которая откладывается на катализаторе и прекращает доступ газа к каталитической поверхности. Многие заводы решают эту проблему, используя отдельный защитный слой катализатора, который может регенерироваться. На установках высокотемпературного неполного окисления углеводородов иногда получают исходный газ, содержащий частицы сажи, которые могут блокировать поры в высокотемпературном катализаторе конверсии СО. Регенерация катализаторов, блокированных смолой и сажей, возможна только в том случае, если физическая структура таблеток катализатора не пострадала во время образования углерода. Некоторые партии катализаторов Ай-Си-Ай 15-2/4 успешно регенерировались, по крайней мере, четыре раза в течение пробега. [c.126]

    Представлены теоретические основы и технология производства технического водорода и синтез-газов для получения аммиака, метанола и других п1)одуктов, а также заменителя природного газа. Рассмотрен способ паровой каталитической конверсии углеводородов в трубчатых печах и очистки конвертированных газов. Описаны конструкции трубчатых печей. Данн основы математического моделирования процессов конверсии, адиабатических реакторов и трубчатых печей. [c.2]

    Механизм парокислородной конверсии углеводородов весьма сложен и в литературе не представлена достаточно обоснованная теория этого процесса. Поэтому предполагаем, что в реакторе протекают следующие четыре реакции, приводящие к образованию всех продуктов конверсии [c.109]

    Степанов A.B. Моделирование адиабатического реактора низкотемпературной паровой конверсии углеводородов. - Хим.технология, [c.307]

    При подборе катализаторов для процесса паровой конверсии углеводородов, в частности, нефтяных фракций, содержащих ненасыщенные углеводороды, руководствуются следующим правилом. Чем более склонно сырье к углеобразованию в зоне реакции, тем ниже должна быть активность катализатора. Поэтому катализаторы часто размещают в конверторе в виде нескольких слоев таким образом, чтобы содержание никеля в составе слоя контакта по длине реактора возрастало. Так, в одном случае содержание никеля на входе в реактор составляет 8%. При этом углеобразо-вание в реакционном объеме не наблюдается (см. табл. 29, № 2). [c.45]

    Катализатор содержит 5—15% никеля и 70% алюмомагниевой шпинели. Прочность катализатора на раздавливание в среднем составляет 600 кгс/см . Конверсию углеводородов осуществляют в присутствии углекислого газа, воздуха и водяного пара при тe пe ратуре 1(ИХ)° С в адиабатическом реакторе с получением водородсодержащего газа [c.74]

    Ядерная энергетика служит мощным средством технического прогресса, в частности повышения эффективности химико-технологических процессов. При широком развитии ядерной энергетики появляется возможность использовать теплоту отходящих газов ядерных реакторов (с температурой 900—1000°С) в металлургии, при переработке твердого топлива, в химической промышленности и других отраслях промышленности особенно перспективно использование отбросной теплоты ядерных реакторов для крупномасштабных химико-технологических процессов, например для производства водорода и сиитез-газа (смесей СО и Нг) путем конверсии углеводородов с водяным паром. Водород — промежуточный продукт, который может применяться в качестве энергоносителя, восстановителя в металлургии и химического сырья. Водород и продукты его переработки (метанол) рассматривают как оптимальное моторное топливо будущего для транспорта и быта (см. с. 71). [c.36]

    Схема одной из получивших широкое распространение установок для производства водорода паровой каталитической конверсией нефтезаводского газа при дав.яепии 2,0—2,5 МПа показана на рис. 40. Нефтезаводской газ сжимается компрессором 70 до 2,6 МПа, подогревается в подогревателе 7 до 300 —400 °С и подается в реакторы 2 и 3 для очистки от сернистых соединений. В случае использования в качестве сырья бензина, последний подают насосом, смешивают с водородсодержаш,им газом, испаряют и подогревают до той же температуры. При использовании природного газа к нему также добавляют водородсодержащий газ. К очищенному газу в смесителе 11 добавляется перегретый до 400—500 °С водяной пар и полученную парогазовую смесь подают на паровую каталитическую конверсию углеводородов (в некоторых случаях парогазовую смесь дополнительно подогревают). [c.128]

    Схема двухстадийной паровой каталитической конверсии углеводородов. Замечено, что в начальном участке реактора паровой каталитической конверсии углеводородов протекает паровая конверсия гомологов метана в метан. В отличие от паровой конверсии метана конверсия его гомологов может быть осуществлена в авто-термичпых условиях, без подвода тепла извне. При использовании в качестве сырья бензина или нефтезаводских газов с углеродным эквивалентом выше 1, на некоторых установках для производства водорвда вводится дополнительно автотермичный реактор [1]. Содержание гомологов метана в газе после такого реактора незначительно. [c.134]

    Схемы с обогревом под давлением реакторов паровой конверсип углеводородов. Современные катализаторы паровой конверсии углеводородов отличаются высокой активностью, что позволяет вести процесс с объемной скоростью подачи газа, намного превосходящей ту, с какой ведется процесс в настоящее время. Объемная скорость лимитируется недостаточной интенсивностью подвода тепла для реакции через стенку реактора. [c.136]

    В зависимости от режима работы установок, являщихся источником сырья, состав его колебался в значительных пределах. Содержание водорода в нем составляло от 20 до 35 об.%, а сернистых соединений от 20 до 50 мг/м . При исследовании стадии пароуглекислотной конверсии сырье смешивалось с углекислотой, очищалось от сернистых соединений и непредельных углеводородов. Затем к нему добавляли водяной пар, и парогазовая смесь под рабочим давлением поступала в реактор конверсии, откуда после отделения воды конвертированный газ сбрасывался в атмосферу. Технологическая схема установки подробно рассмотрена в работе 4], где описаны также методика проведения эксперимента, анализ сырья и получаемых продуктов. Максимальный объем загружаемого катализатора сероочистки и пароуглекислотной конверсии составил 0,5 л. Эксперимент проводился в интервале давлений 1,2-2,О МПа. В результате эксперимента была подтверждена возможность использования катализатора ГИАП-16 и уточнены значения основных параметров процесса. [c.33]

    Исходное сырье подается насосом с установки ГФУ, смешивается с водородом, проходит через подогреватель-испаритель (I) и при температуре 650-670 К поступает в реактор сероочистки (2), заполненный алюмоникельмолибденовым катализатором и поглотительной массой ГИАП-10. К очищенной от сернистых соединений смеси сырья и водорода добавляется водяной пар (подается из сети через пароперегреватель (4), и парогазовая смесь при температуре 620-720 К поступает в реактор низкотемпературной конверсии (3). В адиабатическом реакторе (3) протекает экзотермический процесс конверсии углеводородов, вследствие чего смесь конвертированного газа и непрореагировавшего пара выходит из реактора при температуре 720-820 К. К этой смеси в смесителе (5) подается дополнительное количество водяного пара и она через коллектор (6) поступает в две реакционные трубы (7), которые заполнены катализатором высокотемпературной конверсии и размещены в промышленной печи конверсии. Отходящий из труб газ при температуре 1020-1070 К проходит через коллектор (8) в смеситель (9), куда подается насыщенный пар для понихения температуры парогазовой смеси перед запорной арматурой. Парогазовая смесь через редукционный клапан (10) сбрасывается в конвертор окиси углерода промышленной водородной установки. [c.41]

    Процесс паровой каталитической конверсии углеводородов с целью производства водорода обычно проводят при температурах 1070-1120 К [1,2] о подводом в слой катализатора тепла, необходимого для нагрева реагирующих компонентов и проведения высокоэндотермических реакций. При проведении высокоэндотермических процессов на агрегатах большой иоошости перспективно использование тепла ядерных реакторов. Применительно к процессу высокотемпературной паровой каталитической конверсии возможность использования тепла ядерных реакторов встречает затруднения, связанные о недостаточно высокой разностью между температурой теплоносителя и рабочей температурой процесса. Поэтону проведение процесса конверсии при бо- [c.55]

    Автотермическая каталитическая конверсия углеводородов. Этим способом перерабатываются природный, коксовый и некоторые другие газы. Процесс осуществляется в шахтном реакторе с неподвшшым слоем никелевого катализатора, куда подается предварительно перемешенная смесь газа, пара и кислорода. Разработанные в 50-х годах процессы проводятся под давлением до 60 ат при температуре на выходе из реактора 800-860°С. В зависимости ог назначения получают газовую смесь, состоящую из СО, СО2. и /1 в различных соотношениях. [c.9]

    Следующим этапом развития автотермического процесса было освоение повышен .-)го давления. Первые установки с автотермической конверсией под давлением появились в конце 50-х годов. Наибольшее распространение получили реакторы Т0Р50 -5ВЛ, Конверсия углеводородов от метана до легких бензиновых фракций производится в шахтном реакторе на никелевом катализаторе. Реагенты предварительно нагреваются до 510-570°С и подаются в реактор под давлением 1,7-2,0 МПа. [c.102]

    При метанировании газов низкотешературной конверсии для получения ЗПГ используют те же катализаторы, что в реакторах хаза щка-ции, иногда дяяр частично, отработанные. Это связано с тем,что условия работы в реакторах метанирования более мягкие, чем в реакторах газификации. Б частности, вероятность закоксовывания катализатора очень мала. Поэтому катализаторы низкотешературной конверсии углеводородов пригодны для процессов метанирования. [c.203]


Смотреть страницы где упоминается термин Реактор конверсии углеводородов: [c.112]    [c.127]    [c.133]    [c.184]    [c.35]    [c.83]    [c.101]    [c.305]   
Справочник азотчика Издание 2 (1986) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Расчет реактора конверсии углеводородо

Реакторы конверсии углеводородов Конверторы

Шахтные реакторы конверсия углеводородов



© 2025 chem21.info Реклама на сайте