Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение Частицы в ядерных реакциях

    К ионизирующим относятся электромагнитные излучения высокой энергии - рентгеновские и у-лучи, корпускулярные излучения высокой энергии - быстрые электроны, протоны, нейтроны, дейтроны, а-частицы, осколки деления ядер, ядра отдачи, возникающие при ядерных реакциях, потоки тяжелых ионов [13]. [c.101]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]


    Под действием излучений большой энергии могут происходить превращения и в самих атомных ядрах. Ядерные реакции могут сопровождаться выделением очень большого количества энергии и приводить к выделению из молекул (или из решетки кристалла) атомов или ионов, обладающих большой кинетической энергией. Такие атомы называют горячими атомами. Они могут вступать в самые различные взаимодействия с окружающими частицами. [c.556]

    При температуре 2-10 К у-луч теплового излучения приобретают энергию, достаточную для того, чтобы выбить а-частицы из ядер элементов типа магния, кремния, серы. Образующиеся а-частицы вступают ч ядерные реакции, напрнмер с ядрами с образованием ядер Ni. Составьте уравнения описанных реакций. [c.17]

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]

    Ядерные реакции различают по воздействующему излучению и испусканию, сопровождающему излучение. Ядерные реакции под действием а-частиц с последующим испусканием протонов обозначаются (а, р), а с последующим испусканием нейтронов — (а, о )- [c.21]

    Глубокие химические изменения происходят в полимерах при действии радиационных излучений независимо от вида энергий (рентгеновские, лу-чи, быстрые и медленные нейтроны, быстрые электроны, а-частицы, протоны, другие продукты ядерных реакций), Энергия этих излучений порядка 9—10 эВ и более, тогда как энергия химических связей в полимерах порядка 2,5—4 эВ, Поэтому такие излучения способны вызвать разрыв связей в цепи, но он не всегда имеет место вследствие перераспределения и рассеяния (диссипации) энергии. При облучении, например, полиэтилена лишь 57о поглощенной энергии идет на развитие химических реакций, а 95% рассеивается в виде теплоты. [c.244]


    Как видно из приведенных примеров, при записи ядерных реакций слева указывают исходный изотоп (например, п зNa), затем в скобках — обозначение частиц или излучения, которыми действуют на исходный изотоп, и обозначение частиц или излучения, которые выделяются образовавшимся при облучении новым ядром (в данном случае с , р), и, наконец, справа от скобок указывают образующийся изотоп и Na. Реакцию типа д., р называют еще дейтон-протонной реакцией. [c.219]

    Важнейшей особенностью ядерных реакций является выделение огромного количества энергии в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических реакциях энергия выделяется главным образом в форме теплоты. Энергия ядерных реакций превышает энергию химических реакций в миллионы раз. Этим объясняется неразрушимость ядер атомов при протекании химических реакций. [c.23]

    Ядерные реакции диссоциации (как и реакции термической диссоциации молекул) вызываются кинетической энергией сталкивающихся частиц. Например Br(n, 2м) Вг, 2Н(а, п и а) Н, 2Н(у, п) Н. Последняя реакция является фотохимической реакцией, т. е. вызванной действием электромагнитного излучения ядерной диссоциации. [c.582]

    Долгое время считали, что атомы построены только из протонов и электронов. В 1920 г. Резерфорд предположил существование нейтральной частицы с массой, близкой к массе протона однако эта частица была обнаружена Чедвиком лишь в 1932 г. Чедвик показал, что при бомбардировке некоторых легких элементов, например бериллия или бора, а-частицами — атомами ионизированного Не " — возникает излучение, представляющее собой поток частиц, не имеющих электрического заряда (т. е. не отклоняющихся в магнитном или электрическом поле) масса такой частицы лишь немногим превышает массу протона. Поскольку нейтрон не заряжен, он может приближаться к другим частицам, не подвергаясь действию электростатических сил этим легко можно объяснить его проникающую способность, которая очень важна для ядерных реакций. [c.15]

    Важно отметить, что в ядерных реакциях энергия выделяется в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических же реакциях энергия выделяется главным образом в форме теплоты. Сопоставим ту и другую. В экзотермической реакции, например, окисления кальция [c.68]

    Важнейшей особенностью ядерных реакций является выделение огромного количества энергии в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических реакциях [c.43]

    Химические элементы могут превращаться друг в друга при осуществлении ядерных реакций (взаимодействия ядер атомов с частицами или излучением). Например, при взаимодействии атомов азота (7—порядковый номер, 14 — относительная [c.28]

    Радиоактивность. Ядерные реакции. Радиоактивность— это самопроизвольное превращение атомов одного химического элемента в атомы другого элемента, сопровождающееся испусканием (излучением) квантов энергии, элементарных частиц или ядер. Радиоактивность химических элементов является следствием неустойчивости ядер. В настоящее время известно несколько видов радиоактивных излучений. Чаще всего встречаются следующие  [c.42]

    В нем измеряют интенсивность излучения радиоизотопов элементов, образовавшихся вследствие бомбардировки анализируемой пробы потоком элементарных частиц. При такой бомбардировке происходят ядерные реакции и образуются радиоактивные изотопы элементов, входящих в состав анализируемой пробы. [c.786]

    Нейтронное излучение регистрируют различными способами. Один из них — использование детекторов нейтронов (веществ, которые взаимодействуют с нейтронами, причем ядра атомов расщепляются, а образующиеся при расщеплении заряженные частицы, например сс-частицы, имеют энергию, достаточную для ионизации газа). Наиболее распространенные детекторы нейтронов — бор и литий. Природный бор представляет смесь двух изотопов В (18 7о) и В (82%). Захват нейтрона ядром В сопровождается следующей ядерной реакцией  [c.794]

    В это уравнение входит скорость света с, равная 3,0-10 м/с. Смысл уравнения Эйнштейна заключается в том, что при ядерных реакциях частица массой т может превратиться в излучение с энергией Е (подробнее об этом см. гл. 24). Например, расщепление ядра атома гелия на четыре составляющие его элементарные частицы требует затраты энергии 4,5-10 Дж, и при этом масса четырех полученных частиц возрастает соответственно на 5-10 г. Такие взаимные превращения массы и энергии происходят в циклотронах и других ускорителях элементарных частиц на них основано действие ядерных источников энергии (атомных электростанций) и ядерного оружия. [c.33]

    Все эти реакции протекают самопроизвольно. Позитронный распад и захват / С-электрона встречаются гораздо реже, чем альфа- и бета-рас-пады. Почти все случаи естественной радиоактивности объясняются именно альфа- и бета-распа-дами. Уравнения приведенных выше ядерных реакций записаны в значительно упрощенном виде, так как в них не включены превращения, которые практически не сказываются на массе или заряде частиц. Однако следует указать, что при р-распаде, р -распаде и К-захвате происходит испускание особых частиц — нейтрино кроме того, как это уже было отмечено ранее, большинство ядерных реакций сопровождается испусканием гамма-излучения. Нейтрино представляет собой нейтральную частицу с ничтожно малой массой (см. табл. 24.1), и поэтому его, как и гамма-излучение, можно не включать в уравнения ядерных реакций. [c.427]


    Радионуклид должен удовлетворять ряду требований, чтобы его можно было считать подходящим индикаторным радионуклидом для активационного анализа. Прежде всего, он должен давать достаточно высокую специфичную радиоактивность, и его получению не должны мешать другие нежелательные ядерные реакции. Возможность его специфичного детектирования с желаемой чувствительностью определяется типом, энергией и интенсивностью излучения, испускаемого в процессе распада. Энергию излучения обычно выражают в электронвольтах, эВ. В табл. 8.4-1 суммированы возможные виды распада и типы излучения, которые можно использовать для детектирования индикаторных радионуклидов. Альфа-распад здесь не рассматривается, так как он представляет интерес лишь в случае радионуклидов с > 83. Бета-частицы очень просто детектировать. Однако их непрерывный энергетический спектр препятствует специфичному детектированию радионуклида, если перед счетом [c.98]

    Чувствительность активационного анализа обусловлена интенсивностью потока ядерных частиц, сечением ядерной реакции, периодом полураспада и характером излучения образующегося радионуклида. [c.137]

    Ускорители заряженных частиц. Для получения нейтронов используют ядерные реакции под действием заряженных частиц (обычно дейтронов, протонов и а-частиц), а также фотонейтронные реакции под действием тормозного (рентгеновского) излучения. Эффективное сечение таких реакций зависит от энергии указанных частиц и электростатического барьера ядра-мишени. Энергетический спектр возникающих нейтронов и их угловое распределение определяются видом и энергией частиц, а также характеристиками облучаемых ядер и толщиной мишени (рис. 34). [c.53]

    Однако в опытах 1968 г. анализ энергетического спектра альфа-частиц в области энергий ниже 9,4 МэВ был сильно затруднен из-за присутствия альфа-радиоактивного фона — излучения, подобного искомому, но возникающего в результате побочных ядерных реакций. Фоновые альфа-излучатели образовывались под действием ионов неона-22 па микропримесях свинца в материале мишени. Эти побочные реакции в миллионы раз более вероятны, чем главная, а радиоактивные свойства продуктов таких реакций весьма близки к ожидаемым для изотопов [c.487]

    Радиационно-химические реакции протекают под действием излучений высокой энергии — высокочастотных электромагнитных колебаний( рентгеновских лучей и у-лучей) и частиц большой энергии (электронов, протонов, нейтронов, а-лу-чей). В качестве источников излучения применяются ядерные реакторы, ускорители частиц, радиоактивные изотопы (долгоживущие) и т. д. [c.195]

    Корпускулярное излучение состоит из незаряженных нейтронов и заряженных частиц, например, электронов, протонов и а-частиц. Обычным источником получения нейтронов является ядерный реактор. Заряженные частицы могут образоваться при ядерных реакциях (включая радиоактивный распад) или в электроускорителях. [c.156]

    Радиоактивационный метод анализа. Метод основан на облучении испытуемого материала элементарными частицами, причем вследствие ядерных реакций возникают радиоактивные изотопы определяемых элементов или новые радиоактивные элементы. После облучения определяют содержание радиоактивных компонентов ядерной реакции. Для этого в простейших случаях используют непосредственно измерение радиоактивности материала после облучения, учитывая природу излучения, его энергию и период полураспада изотопа. Так, например, определяют содержание примеси меди в металлическом серебре. При облучении образца серебра посредством а-частиц медь (Си ") превращается в радиоактивный изотоп галлия (Са° ). который излучает позитроны и характеризуется периодом полураспада 9,6 часа. По интенсивности излучения этого изотопа галлия рассчитывают содержание меди в образце серебра. При облучении, вследствие ядерной реакции, из основного материала — серебра образуется два радиоактивных изотопа иидия, однако их период полураспада велик, поэтому радиоактивность мала таким образом, эти изотопы не мешают определению меди. [c.21]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    Большой интерес представляют различного типа ядерные реакции с участием нейтронов. Нейтроны присутствуют в космическом излучении, образуются в (а, оп ) и (у, о )-реакциях, а также возникают при спонтанном делении урана. Так, нейтроны образуются, если легкие элементы (Ь1, Ве, В, Н, Р, Ма, Mg, А1) бомбардировать а-частицами или частицами, возникающими из естественно-радио-активных элементов, таких, как полоний. Примером такой реакции может служить ранее рассмотренная ядерная реакция Ве (а, о ). Поэтому комбинации Ве — 1) и Ве — ТЬ в соответствующих минералах могут рассматриваться как природные источники нейтронов (например, обогащенные ураном ниоботанталовые минералы, содержащие небольшое количество бериллия). Самой простой реакцией, вызванной нейтронами, является образование дейтерия из водорода [Н (у, о )ОЧ. Она протекает в результате поглощения нейтронов во всех водородсодержащих веществах. Захват нейтронов может изменить изотопный состав нескольких элементов в урано- [c.22]

    Ядерные процессы, как правило, сопровождаются выделением ( выбрасыванием ) различных частиц (электронов, нейтронов, а-ча-стиц и др.), а также электромагнитным излучением (у-лучи и лучи типа рентгеновских). При этом выделяется большое количество энергии — в форме кинетической энергии продуктов ядерной реакции (элементарных частиц, осколков ядер и т. п.), движущихся с огромной скоростью и часто, кроме того, в виде указанных-выше излучений (иногда—только в виде излучений), а также энергии отдачи. Так, энергетический эффект обычных химических реакций на Авогадрово число (6-10 ) реагирующих частиц большей частью лежит в пределах 20—200 ккал. В то же время энергия, выделяющаяся при большинстве ядерных реакций, превышает 10° эв на одно ядерное превращение. На Авогадрово число превращений это дает 2,3-10 ккал и более, т. е. в сотни тысяч, а во многих случаях — и в миллионы раз больше, чем при обычных химических реакциях. [c.372]

    Радиохимические реакции вызываются воздействием ионизирующих излучений потоком нейтронов, а-частиц, электронов, -лу-чами и т. д. Интерес к изучению радиохимических процессов резко возрастает в связи с щироким использованием лучистой энергии в народном хозяйстве, медицине, а также в связи с возможностью использования ядерных реакций в военных целях. [c.115]

    Проходя сквозь вещество, ядерные частицы взаимодействуют в основном с электронными оболочками атомов, а не с ядрами, так как доля пространства, занимаемая последними, весьма мала и состаршяет —10 об.%. Главный результат взаимодействия этих частиц с веществом — ионизация и (или) возбуждение молекул. Поэтому -у-лучи, быстрые электроны, протоны, нейтроны, дейтроны, а-частицы, осколки деления ядер, ядра отдачи, возникающие при ядерных реакциях, потоки ускоренных многозарядных ионов называются ионизирующими излучениями. [c.594]

    В результате фундаментальных исследований в области развития учения о строении атомов химических элементов были открыты и количественно охарактеризованы элементарные частицы, обладающие массой покоя,— электроны, протоны и нейтроны. В 1891 г. английским физиком Дж. Стонеем был введен термин электрон, обозначавший единичный электрический заряд, а в 1897 г. Дж. Томсон, изучая катодное излучение в трубке Крукса, доказал, что оно представляет собой поток отрицательно заряженных частиц. Б 1909 г. Р. Малликен установил заряд электрона, равный 1,60210-10 Кл (масса электрона 9,1091 10" кг, размер 10 м). Каналовое излучение в аналогичных опытах представляло, как было установлено немецким физиком Е. Гольдштейном (1886), потоки положительно заряженных частиц, заряды которых были кратны заряду электрона или равны ему, но противоположны по знаку, а масса совпадала с массой атома водорода (1,67252-10 кг). Эти частицы были названы протонами (Дж. Томсон, В. Вин). В 1932 г. Дж. Чедвик при изучении ядерных реакций открыл нейтральную частицу с массой 1,67474-10 кг, которая была названа нейтроном. [c.189]

    Фотоактивационный анализ основан на использовании в качестве источника излучения жесткого у-излуче-ния. Прн взаимодействии с у-излучением ядер атомов возможно протекание ядерных реакций различных типов— с выделением нейтронов (, п), протонов (у,р), а-частиц (7, ). Особенностью фотоядерных реакций является их пороговый характер — они происходят только при вполне определенной для ядра каждого элемента энергии у-излучения. Так, порог реакций с выделением нейтронов составляет для бериллия 1,67 МэВ, для кислорода Ю — 4,14 МэВ, для углерода — С — 4,95 МэВ н т. д. [c.794]

    РЕАКЦИИ ХИМИЧЕСКИЕ, превращения одного или неск. исходных в-в (реагентов) в отличающиеся от них по хнм. составу или строению в-ва (продукты р-ции). В отлнчие от ядерных реакций, при Р. х. не изменяется общее число атомов в реагирующей сист., а также изотопный состав хим. элементов. Р. х. происходят при смешении или физ. контакте реагентов самопроизвольно, при нагревании, участии катализаторов (см. Катализ), действии света (см. Фотохимические реакции), электрич. тока (см. Электродные процессы), ионизирующих излучений (см. Радиационно-химические реакции), мех. воздействиях (см. Механохимические реакции), в низкотемпературной плазме (см. Плазмохимические реакции) и т. п. Превращения частиц (атомов, молекул) осуществляются при условии, что онн обладают энергией, достаточной для преодоления потенц. барьера, раэде-.пяющего исходное и конечное состояния сист. (см. Энергия активации). [c.499]

    Активационный анализ. Сущность активационного анализа заключается в наведении радиоактивности в исследуемом веществе при облучении его потоками частиц, способными вызвать ядерную реакцию. По характеру возникшей в результате облучения радиоактивности (тип распада, энергия излучения) судят о том, какие химические элементы входят в состав образца, а по ннтенснвностн излучения определяют количественное содержание элементов. [c.165]

    Нейтронное излучение взаимод. только с атомными ядрами среды. По энергии нейтроны (в сравнении со средней энергией теплового движения кТ где /с-постоянная Больцмана, Т-абс. т-ра) подразделяют на холодные (Е < кТ), тепловые (Е кТ), медленные (кТ< Е < 10 эБ), промежуточные (10 < < 5 10 эВ) и быстрые ( >5 -10 эВ). Нейтроны в в-ве испытывают упругое и неупругое рассеяние. Прн достаточной энергии нейтроны могут выбивать частично ионизир. атомы из среды (т. наз. ядра отдачи). При захваге нейтронов атомными ядрами могут происходить ядерные реакции, последствием к-рых является испускание у-квантов, о.- и Р-частиц, осколков деления ядра и др. Ослабление потока нейтронов происходит по экспоненциальному закону Ф = где N-число атомов дан- [c.254]

    Радиоактивность (от лат. radio — излучаю и a tivus — деятельный) —самопроизвольное превращение неустойчивых (нестабильных) изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц или ядер (напр., гелия). Существует а-распад, -распад, которые часто сопровождаются испусканием у-лучей, спонтанное деление и др. Скорость радиоактивного распада характеризуется периодо.м,полураспада (Т" / ). Наиболее распространенной единицей измерения Р. является кюри. Р. используется в науке, технике и медицине. См. Радиоактивные изотопы, Радиоактивные элементы. Радиоактивные изотопы — неустойчивые, самопроизвольно распадающиеся изотопы химических элементов. При радиоактивном распаде происходит превращение атомов Р. и. в атомы одного или нескольких других элементов. Известны Р. и. всех химических элементов. В природе существует около 50 естественных Р. и. с помощью ядерных реакций получено около 1500 искусственных Р, и. Активность Р. и. определяется числом радиоактивных распадов в данной порции Р. и. в единицу времени (единица активности — кюри). Р. и. характеризуются периодом полураспада (время, в течение которого активность убывает вдвое), типом и энергией (жесткостью) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. В технике применяются только некоторые из искусственных Р. и.— наиболее дешевые, достаточно долговечные с легко регистрируемым излучением. Наиболее важные области применения — радиационная химия, изучение механизма различных химических процессов, в том числе в доменных и мартеновских печах, износа деталей машин, режущего инструмента, процессов диффузии и самодиффузии и др. В у-дефектоскопии используются Р. и. с у-излученнем для просвечивания изделий и материалов, для выявления внутренних дефектов. [c.110]

    Для аналитической химии XX в. характерны исключительные темпы развития. Преимущественное развитие получают физи1(о-химические и физические методы анализа, которые называют инструментальными методами анализа. Этими методами измеряют плотность, вязкость, поверхностное натяжение, помутнение, показатель преломления, вращение плоскости поляризации. Диэлектрическую проницаемость, электрическую проводимость, радиоактивность и другие свойства. Все шире используют методы, затрагивающие самые глубинные области атома, вплоть до ядра (нейтроно-активационный, радиоактивационный и др.). В анализах применяют ядерные реакции при действии нейтронов, заряженнЬк частиц и у-излучения, а также оптичеокие квантовые генераторы света (лазеры). [c.9]

    Ядерно-физические методы основаны на облучении образца элементарными частицами или у-квантами. В результате ядерной реакции образуется радиоактивный изотоп. Число образовавшихся радиоактивных атомов примеси пропорционально ее содержанию в анализируемом образце. Существуют методы определения кислорода, азота и углерода с использованием ядерных реакций на заряженных частицах (протонах, дейтронах, тритонах, гелии-3 и а-частацах), 14 МэВ-нейтронов и тормозного у-излучения. Для повышения чувствительности ядерно-физических методов применяется радиохимическое выделение с использованием восстановительного плавления, дистилляции и т.п. [c.931]

    В Дубне элементом № 103 начали заниматься лишь через четыре года после появления этой первой и, прямо скажем, не слишком убедительной публикации. При облучении америция-243 ионами кислорода-18 получили изотоп 103 с периодом полураспада 35+10 секунд. Б 1966—1967 гг. были более детально изучены его радиоактивные характеристики, в частности сложный спектр альфа-излучения с энергией от 8,35 до 8,60 Мэв и ярко выраженным максимумом вблизи 8,42 Мэв. Затем были предприняты попытки получить и изотоп с массовым числом 257, описанный в работе 1961 г. Однако обнаружить изотоп 103 Го элемента с периодом полураспада около 8 секунд и энергией альфа-частиц 8,6 Мэв так и не удалось ни в одной ядерной реакции, которая бы могла привести к образованию иуотода 403. [c.469]


Смотреть страницы где упоминается термин Излучение Частицы в ядерных реакциях: [c.33]    [c.34]    [c.21]    [c.407]    [c.43]    [c.695]    [c.425]    [c.299]    [c.300]   
Применение радиоактивных изотопов для контроля химических процессов (1963) -- [ c.36 , c.41 , c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции ядерные



© 2024 chem21.info Реклама на сайте