Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие стерическое

    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]


    Метод оказался неприменимым как в случае алифатических соединений, в которых кислотно-основные свойства заместителей не так легко передаются по цепи, так и в случае орто-заместителей, поскольку в этом случае приобретают важное значение стерические факторы и специфические взаимодействия, не связанные с бензольным кольцом .  [c.525]

    Если X — алифатические заместители, то одновременный учет индукционного взаимодействия, стерического эффекта, гиперконъюгации (строго говоря, а-водородного эффекта) и сопряжения между я-электронными системами осуществляется общим уравнением Тафта (в этой записи индексы реакционной серии и заместителя опущены)  [c.231]

    В алифатическом ряду полярные эффекты чаще всего являются только индуктивными (в отличие от ароматических соединений)., Поэтому константы ст Тафта для заместителей потенциально имеют более общий характер, чем константы о Гаммета. Это относится, в частности, к алифатическим гликолям с небольшим числом метиленовых групп между группами ОН и к их простым эфирам. На реакционный центр этих соединений может оказывать влияние, в основном, только индукционный эффект заместителей. Влиянием других факторов внутримолекулярного взаимодействия (стерический эффект, полярное и неполярное сопряжения, [c.89]

    Проблема происхождения электронных спектров поглощения тесно связана с развитием квантово-механических представлений о строении вещества и природе химической связи. Современные квантово-механические методы в сочетании с результатами экспериментальных исследований позволяют понять природу электронных спектров поглощения, выяснить их связь с электронным строением и реакционной способностью молекул, объяснить влияние различных внутримолекулярных электронных взаимодействий, стерических эффектов и окружающей среды на характер наблюдаемых спектров поглощения. [c.3]

    Эти превращения тесно связаны с электрофильным ароматическим замещением, особенно с металлированием под действием катионов металлов, например Hg2+. Региоселективность этих реакций, наблюдаемая для комплексов с К = Н, СНз и. СРз, отражает обычное взаимодействие стерических и электронных эффектов, характерное для ароматического электрофильного замещения. [c.163]

    Геометрия адсорбции октагидрофенантрена [111 а — кольцо А не взаимодействует с катализатором б — стерические препятствия при адсорбции кольца А на катализаторе. [c.11]


    Оценим значение предэкспонента А. Пусть относительная скорость V см/с, значение ст (10-1 4-10-1 ) м тогда г (10-1 - -10-11) смЗ/с. В предположении Р 1, величина А также должна быть порядка (10- 11-1-10-1 ) см с. Однако для многих реакций значения А на 3—5 порядков ниже приведенной оценки. Эти отклонения обусловлены именно стерическим фактором Р, величина которого произвольно принята 1,4X0 с физической точки зрения означает пренебрежение распределением энергии по внутренним степеням свободы взаимодействующих частиц. Поэтому дальнейшее продвижение теории связано с попытками учета распределения энергии по внутренним степеням свободы [21, 30-38]. [c.56]

    Таким образом, стерический фактор существенно зависит от вида / (Б, Е5 ол), т. е. не только от суммарной энергии, но п от ее распределения по степеням свободы при соответствующей ориентации взаимодействующих частиц. [c.57]

    В таком случае при введении малых количеств МоСЬ хлорные мостики почти не разрушаются, и некоторое торможение изомеризации вызвано стерическими затруднениями обмена олефинового лиганда с олефином, что и наблюдается в действительности. В больших количествах МоСЬ взаимодействует с хлорными мостиками это приводит к образованию одноядерных комплексов, где атом палладия связан с двумя молекулами олефина, что должно ускорять изомеризацию. Такое же ускорение происходит в присутствии спиртов, расщепляющих хлорные мостики [69]. [c.124]

    Следовательно, половина расстояния между центрами взаимодействующих мож-кул катализатора и реагента равна 4,7-10 см=0,47 нм. Если бы расчет дай завышенный по сравнению с реальным размер межатомного расстояния, это указало бы на стерические затруднения. [c.133]

    В целях простоты мы будем говорить о взаимодействии связей и замещающих радикалов, хотя стерическое взаимодействие имеют соответствующие атомы водорода, а не связи. [c.65]

    Та же закономерность наблюдается при рассмотрении теплот гидрирования, причем 2-метилпропен не может сравниваться в этом ряду при его гидрировании образуется 2-метилиропан, в то же время как гидрирование остальных алкенов приводит к я-бутану, стандартные же энтальпии образования -бутана и изобутана различны. Наблюдаемые различия между изомерными бутенамн можно понять, если принять, что стабилизация бутена-1 за счет сверхсопряжения меньше, чем у бутена-2, и что в (2)-бутене-2 наблюдается несвязное взаимодействие (стерическое отталкивание) между метильными группами, стоящими в цис-положеиш. [c.220]

    В табл. 1.2 представлены данные о релаксацпонных переходах некоторых пз указанных ПОЭ, показывающие, что (температура а-перехода) и температуры других переходов зависят не только от жесткости цепи, но также от внутри- и межмоле-кулярных взаимодействий стерического и дипольного характер,). Замена группы СНз — С — СНз на О = 8 = О не оказывает влияния на низкотемпературный переход, однако при этом Гс увеличивается на 65°С, очевидно, за счет большей полярности сульфидной группы и высокого уровня межмолекулярного взаимодействия. Можно полагать, что здесь существенный вклад вносит образованпе водородных связей между группами ОН и [c.10]

    Эфиры циановой кислоты образуются также при взаимодействия стерически затрудненных фенолов с хлорцианом  [c.337]

    Энергии адсорбции отдельных групп были определены для ряда функциональных групп на различных адсорбентах. В табл. 3.5 приведены данные, полученные для адсорбции на окиси алюминия и силикагеле величины Q° для фпорисила обычно идентичны значениям для силикагеля. Чем выше значение энергии адсорбции данной группы, тем сильнее молекула адсорбируется. Из-за низкого значения энергии адсорбции метиленовой группы члены гомологических рядов имеют приблизительно одинаковые энергии адсорбции. Поэтому в адсорбционной хроматографии в отличие от распределительной соединения разделяются в основном по типу, а не по молекулярному весу. Значение энергии адсорбции групп может измениться в результате внутримолекулярных электронных взаимодействий, стерических эффектов (например, плоские молекулы адсорбируются лучше, чем неплоские, яра с-изомеры лучше, чем цис орио-замещенные ароматические соединения адсорбируются менее сильно, чем мета- или пара-производные) и химических взаимодействий между соседними функциональными группами. Например, водородная связь уменьшает энергию адсорбции. Для детального ознакомления с влиянием структуры образца на значения рекомендуется обратиться к работе /2/. [c.71]

    Ингибиторы окисления. Известны примеры введения в полимерную матрицу групп, выполняющих функцию ингибиторов окисления взаимодействие стерически затрудненных фенолов с эпок-сидированным полиизопреном или 1,2-полибутадиена с ароматическими аминами [177]  [c.110]

    В какой-то мере замещение 5 2 моделируется, например, взаимодействием стерически затрудненных фенолов и хинолидных соединений [57]. [c.32]

    Как показано в работе , oбъя ниtь снижение температуры стеклования только уменьшением роли межмолекулярного взаимодействия не удается. Частично сдвиг температур стеклования рассмотренных двух полимеров действительно связан с межмолекуляр-ным взаимодействием, а частично с внутримолекулярным взаимодействием (стерическими факторами). Таким образом, необходимо учитывать как роль межмолекулярных связей, так и роль релаксационных явлений. В различных случаях влияние одного из факторов может преобладать (см. стр. 37). [c.22]


    Второй тип побочных превращений — диполярное (2+3) циклоприсоединение реагентов — прямо связан с особенностью первичных актов взаимодействия реагентов. Образование циклоаддуктов установлено в реакциях диазоалканов с тиокетонами, тиоацилатами и 80г [54—59, 83, 99]. Это явление имеет место при смешении реагентов в очень мягких условиях или при взаимодействии стерически затрудненных реагентов. В ряде случаев процессы образования тииранового и тиадиазолинового циклов выступают как конкурентные. [c.32]

    Как видно, для выяснения воспроизводимости проводится достаточно кропотливое определение данных, характеризующих время удерживания, фактор удерживания, фактор разделения, эффективность колонки и асимметрию пиков для различных соединений пробы. Необходимо также учитывать факторы, описывающие взаимодействия поверхности ХМК с отдельными соединениями пробы, такие как селективность гидрофобных взаимодействий, стерическая селективность и факторы разделения основных соед1шений при различных значениях pH. Изучаемыми параметрами обычно являются время удерживания, факторы удерживания и разделения, гидрофобность и стерическая селективность, эффективность колонки и фактор асимметричности. [c.404]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    При гидрировании З-трег-бутил-2-метилциклогексена на скелетном никеле выход цыс-формы составил 93— 94%, а в случае 2-грег-бутил-З-метилциклогексена — только 6—13%. Считают [13], что изомерный состав продуктов реакции и смещение положения равновесия между ст- и я-адсорбированными формами в сторону ст-форм определяется одними и теми же факторами 1) стерическим взаимодействием катализатора с ал-лильной группировкой и 2) торсионным угловым напряжением, возникающим при взаимодействии аллильной [c.26]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]

    Нзопропилмагнийоримид, в частности, не способен к обычной реакции присоединения к Диизопропилкетону. В связи с этим были оставлены попытки синтезировать этим методом соединения, содержащие триизо-пропилметильную группу [30]. Изучение взаимодействия диизопропил-кетона с различными алкилмагнийгалогенидами показало, что протеканию этих реакций присоединения могут препятствовать стерические факторы [140]. [c.422]

    Стерический эффект заместителя. В а-комплексах, ведущих к обра-вованию о-замещенного продукта (ЪХУП), стерические взаимодействия [c.418]

    В качестве единицы сравиения удобно взять ж-положение, так как оно в значительной степени свободно от резонансного взаимодействия. Отсутствие значительных различий между соотношениями п и. и-поло-жений в этой серии приводит к заключению, что влияние полярности алкильных заместителей практически одинаково. Поэтому очевидно, что заметное уменьшение нитрования в сторону образования замещенч ного в о-положение изомера должно являться прямым результатом разницы в стерических возможностях алкильных заместителей. [c.419]

    У диалкилдитиофосфатов цинка радикал нормального строения предпочтительнее, чем радикал изостроеиия, так как приводит к некоторому повышению солюбилизирующей способности их смесей с присадкой сукцинимидного типа в случае увеличения длины алкильного радикала дитиофосфата цинка синергетический эффект при солюбилизации несколько снижается. Оба отмеченных факта, по-видимому, объясняются увеличением стерических препятствий, возникающих при взаимодействии дитиофосфата цинка с сукцини-мидом [56 ]. [c.183]

    Е. озможны при энергии активации всего 7000 кал1моль и т. д. Стерические же множители варьируют (в зависимости от сложности взаимодействующих частиц) от значений, близких к единице, до значений порядка 10 . [c.137]

    Прямая реакция 10+ протекает почти без энергии активации EIb О, и, таким образом, коэффициент скорости kfo практически равен частоте соударений. В ходе элементарного акта взаимодействия атсЗма О и радикала ОН мультиплетность не нарушается и при образовании активированного комплекса пет сильного изменения направлений валентных углов в отличие от стерически аналогичной реакции 26. Поэтому в принципе следует ожидать нормальных значений А Ь (Ю Ч-Ю ). Для Ejo О, ЕГо —70 ккал/моль. Теоретический расчет kto = /(Т, М) не приводит к удовлетворительным результатам, во-первых, потому, что расчет по (4.10), (4.11) для М = На не совпадает со значениями из табл. 4, а, во-вторых, [c.274]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Поскольку пдЁСь явно выделено газокинетическое число столкновений Zo, множитель в скобках можно интерпретировать как стерический фактор Р, характеризующий эффективность реакции при одном столкновении. Из вывода (11.12) можно ]Я1деть, что появление этого множителя связано с необходимостью образования предпочтительной относительной ориентации для перехода через потепциальт1ЫЙ барьер. Таким путем метод переходного состояния учитывает направленный характер взаимодействия, приводящего к образованию химической связи. Для численной оценки заметим, что для молекул среднего атомного веса при 300 К < Г < 1000 К /др л 10 и /кол — 1-Отсюда получаем [c.73]

    По мнению авторов, взаимодействию ангидрида с изомером IV препятствуют стерические факторы. Те же авторы объясняют и тот факт, что из четырех возможных тримеров изобутилена в реакцию с малеиновым ангидридом вступают только 2,2,6,6-тетраметил-4-метилиденгептан(У) и 2,4,4,6,6-петаметил-гептен-1 (VI)  [c.88]

    Обычно рассматривают соотношения изомеров мета1пара и орто/пара. Если на соотношение мета/пара влияют электронные сдвиги заместителя и энергетические факторы алкилирующего агента, то на соотношение орто1пара — фактор стерических препятствий и химического взаимодействия. Теоретическое соотношение изомеров орто/пара, равное 2 1, снижается по мере увеличения объема заместителя или атакующего агента. [c.42]

    Интересно отметить, что структура группы, присоединяющейся к ароматическому ядру, может определяться стерическими затруднениями. Известно, что третичная алкильная группа не может присоединяться в орго-положение к метильному заместителю. Именно этим и объясняется тот факт, что грег-бутил-хлорид не взаимодействует с га-ксилолом. Если же использовать в качестве алкилирующего агента трет-пентилхлорид, то алкилирование протекает с образованием лишь одного продукта с выходом более 50%, что можно объяснить следующей схемой  [c.101]

    Реакция внутримолекулярного циклоалкилирования привлекает внимание исследователей как метод синтеза индановых и нафталиновых углеводородов, потребность в которых для промышленных целей заметно возрастает. На преимущественное образование бензоцикленовых углеводородов с пяти-, шести- или семичленными циклами основное влияние оказывает длина и строение углеродной цепочки алкильного заместителя, а также природа активного центра — наличие двойной связи, галогенов или гидроксильных групп. Заметную роль в направленности атаки ароматического ядра и структуры образующегося кольца играют стерические эффекты и эффекты взаимодействия арома -тической группы с катионным центром. Катализаторами такой реакции могут быть как протонные кислоты, так и кислоты Льюиса. [c.123]

    Перенос протекает значительно легче, чем от метилциклогексана, для которого энергия активации оказалась равной 89,1 кДж/моль. Эту разницу между двумя донорами гидрид-ионов мож но объяснить, принимая во внимание, что сольволиз соответствующих 1-хлор-1-метилциклоалканов на 16,7 кДж/моль предпочтительнее для циклопентильной системы и что в бимолекулярном переходном состоянии между грег-бутилхлоридом и метилциклогексаном возникает сильное стерическое взаимодействие (грег-бутильный катион присоединяется к атомам С в положениях 3 1И 5), что значительно увеличивает энергию переходного состояния. Это взаимодействие отсутствует в случае метилциклопентана. [c.17]

    В 1,3-диметил-2-этилциклопентанах снова отчетливо проявляется влияние 1 ис-вицинального взаимодействия в исходных углеводородах на скорость реакции (стерическое содействие). Соотношение скорости расширения цикла в ряду траке, транс- транс, цис-жцис цис-жзомеров составляет 1 13 30. Среди полученных триметилциклогексанов несколько преобладает транс,транс-ъзомер, образующийся из наиболее пространственно незатрудненной конформации (типа А) исходного г г/с,г с-1,3-диметил-2-этилцикло-пентана  [c.177]


Смотреть страницы где упоминается термин Взаимодействие стерическое: [c.592]    [c.363]    [c.225]    [c.86]    [c.421]    [c.135]    [c.235]    [c.20]    [c.257]    [c.62]    [c.108]    [c.187]    [c.74]   
Введение в теоретическую органическую химию (1974) -- [ c.88 , c.163 , c.228 , c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте