Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бикарбонат кристаллизация

    Прямое определение метастабильных давлений в данном случае было возможно потому, что протекавшие в растворе процессы (гидролиз иона карбамата и кристаллизация бикарбоната натрия) достаточно медленны. Когда реакции идут быстро, такое определение становится невозможным. [c.153]

    Продукты ацилирования кетоенолов, находящиеся в эфирном растворе, могут содержать в качестве примесей исходный кетоенол и кислоту, соответствующую взятому для реакции хлорангидриду (кроме того, кетоенол и кислота могут быть продуктами гидролиза побочно образующихся О-производных). Кислоту удаляют, экстрагируя ее насыщенным раствором бикарбоната натрия, затем эфирный раствор промывают водой, сушат безводным сульфатом натрия и эфир отгоняют. Если в продукте присутствует примесь исходного кетоенола, она или уходит с пред-гоном или (если главный продукт является твердым веществом и очищается кристаллизацией) остается в маточном растворе. [c.614]


    Определенные трудности вызывает пуск агрегатов в зимнее время (возможность кристаллизации бикарбоната калия), коррозия, выщелачивание керамической насадки. В связи с опасностью коррозии в горячем поташном растворе не допускается концентрация ионов СГ более 15 мг/л, поэтому для приготовления раствора может быть использован только поташ марки хч или чда . Необходима тщательная промывка системы перед пуском. [c.253]

    Чистая концентрированная иодистоводородная кислота, служащая исходным веществом в этой методике, синтезируется из очищенного иода и водорода, как описано в синтезе 54. Бикарбонат калия очищается повторной кристаллизацией, из воды при 70° в атмосфере углекислого газа. [c.158]

    Известно, что по аммиачно-хлоридному способу производства соды раствор хлористого натрия, насыщенный аммиаком, подвергается карбонизации с помощью двуокиси углерода, что приводит к образованию бикарбоната натрия, который выпадает в осадок и отделяется фильтрацией. Бикарбонат далее прокаливается для получения карбоната натрия, в то время как маточный раствор после кристаллизации бикарбоната подвергается переработке с целью регенерации аммиака. Водный маточный раствор содержит в основном хлорид аммония, но если конверсия хлористого натрия неполная, то он также присутствует в растворе в достаточно большом количестве. В маточном растворе присутствует в незначительном количестве свободный аммиак и его летучие соединения, например бикарбонат и карбонат аммония, а также некоторые примеси из исходного раствора. [c.45]

    Процесс проводится следующим вбразем. Раетвор с барабанных фильтров, остающийся после кристаллизации бикарбоната натрия и содержащий ЫагСОз и (ЫН4)2СОз, нужно нагреть и направить в аппарат для выделения аммиака. Предварительное нагревание можно проводить в теплообменнике, к которому подводятся горячие газы из колонны отгонки аммиака от конденсата и из колонны отгонки аммиака от маточного раствора (фильтрационного щелока),— регенерация теплоты, косвенный теплообмен, противоток. Дальнейшее нагревание раствора осуществляется в скруббере, где выделяется аммиак. Раствор орошает насадку скруббера и контактирует с горячими газами и паром из дистиллера — прямой нагрев, развитие поверхности соприкосновения фаз, противоток, регенерация теплоты. [c.427]


    Борная кислота. -Едкое кали, 5 н, раствор. Тетрафторборат калия или тетрафторборат натрия. Для приготовления тетрафторбората" натрия к 25 г плавиковой кислоты (40%-ный раствор), находящейся в охлаждаемой льдом платиновой чашке, прибавляют невольшими порциями 6,2 г борной кислоты и смесь оставляют стоять в течение 6 ч при комнатной температуре. Затем снова помещают чашку в баню со льдом, охлаждают и ней- трализуют содержимое, добавляя 5,3 г безводного бикарбоната натрия. Раствор упаривают до качала кристаллизации и- после охлаждения отделяют выделившиеся кристаллы, которые затем высушивают в вакууме. [c.290]

    Как правило, сульфокислоты выделяют не в свободном виде, а в виде их натриевых солей. По окончании сульфирования реакционную смесь выливают в воду, полученный раствор частично нейтрализуют бикарбонатом натрия и нагревают до кипения. Затем добавляют хлористый натрий до получения насыщенного раствора и раствор оставляют стоять для кристаллизации. Для высаливания сульфонатов-с небольшим молекулярным весом требуется большой избыток хлористого натрия, что приводит к загрязнению продуктов реакции. В таком-случае чистый сульфонат можно получить перекристаллизацией из абсолютного этилового спирта, в котором натриевые соли низкомолекулярных сульфокислот умеренно растворимы, а хлористый натрий совершенно нерастворим. Натриевые соли высокомолекулярных сульфокислот, которые нерастворимы в этиловом и метиловом спиртах, также могут быть получены в чистом, свободном от соли виде. Для этого-вначале применяют повторное высаливание продуктов из их водных растворов, используя ацьтат натрия вместо хлористого натрия. Полученный сульфонат сушат, растирают и многократно экстрагируют кипящим метиловым спиртом, чтобы удалить примеси ацетата натрия, который сравнительно легко растворяется в спирте. Другой метод выделения сульфоната натрия из реакционной смеси, содержащей избыток серной кислоты, состоит в нейтрализации разбавленной смеси гидроокисью кальция или же карбонатом бария или свинца. Образующийся сульфонат экстрагируют горячей водой и таким путем отделяют от примеси неорганического сульфата. Затем к водному экстракту добавляют углекислый натрий при этом углекислые СОЛИ кальция, бария или свинца выпадают в осадок. Из фильтрата после упаривания выделяют натриевую соль сульфокислоты. Сульфенат свинца можно разло- [c.222]

    К концу этого периода выделяются кристаллы кислоты G и масса загустевает при этом, во избежание затвердевания реакционной массы, не следует прекращать перемешивание. Содержимое колбы выливают тонкой струей, при перемешивании, в стакан, содержащий 950 мл воды, отмечают уровень жидкости и нагревают ее до кипения в течение 1 часа, сохраняя постоянный объем (примечание 3). Затем в горячий раствор вносят 85 г хлористого калия и после его растворения оставляют раствор на ночь для кристаллизации. Выделившиеся кристаллы калиевой соли G-кислоты отсасывают на воронке Бюхнера, промывают дважды (порциями по 100 мл) 15%-ным раствором хлористого калия и тщательно отжимают. Получается около 200 е пасты, содержащей около 0,3 моля калиевой соли G-кислоты, с небольшой примесью кислоты Шеффера и / -кислоты. Содержание примесей можно определить, растворив отвешенную пробу в небольшом количестве воды с избытком бикарбоната натрия и оттитровав 0,1 н. раствором иода в присутствии крахмала (примечание 4), Суммарное содержание сульфокислот определяется по сочетанию с хлористым ж-нитрофенилдиазонием. [c.270]

    Аскорбинат натрия eHjO Na, молекулярная масса 198,11 [а]р =- -105 (вода) хорошо растворим в воде, нерастворим в безводном спирте, эфире и других органических растворителях. Аскорбинат натрия получают путем нейтрализации насыщенного водного раствора аскорбиновой кислоты бикарбонатом натрия при температуре 55—70° С и осаждения полученной соли из водного раствора спиртом [35] или путем добавления горячего спиртового раствора NaOH к спиртовому раствору аскорбиновой кислоты и последующей кристаллизации 21]. Аскорбинат натрия применяют вместо аскорбиновой кислоты для приготовления инъекционных растворов [151], а также для витаминизации пищевых продуктов. [c.290]

    Процесс кристаллизации бикарбоната натрия играет большую роль при карбонизации аммонизир ванного рассола. Он определяет температурный режим карбонизации и производительность карбонизационной колонны. К качеству кристаллов предъявляются очень высокие требования они должны быть одйородными по размеру и форме. От соблюдения этих условий зависит работа отделений фильтрации и содовых печей, а также качество готового продукта - соды. Мелкие, илистые или сросшиеся кристаллы трудно фильтруются и промываются, они забивают поры фильтрующей ткани и удерживают много маточного раствора (влаги). Это ведет к перерасходу тепла на кальцинацию и повьпиению содержания СГ в готовой продукции. [c.123]


    Как видно из графика, при степени карбонизации около 100%, т.е. в начальный период кристаллизации МаНСОз, когда образуются кристаллические зародыши, оптимальная для скорости поглощения СО2 температура составляет около 50° С, но практически в этой зоне карбонизационной колонны поддерживают температуру 60—68° С из-за требований, предъявляемых к качеству кристаллов. При выходе иэ колонны степень карбонизации суспензии составляет 185—190%. Согласно рис. 51 при такой степени карбонизации оптимальная температура выходящей суспензии должна быть ниже 20° С. Однако требования, связанные с качеством кристаллов NaH Oз, заставляют поддерживать температуру около 2э—30° С. Таким образом, главным фактором, определяющим температурный режим по всей высоте колонны, является качество кристаллов бикарбоната натрия. [c.125]

    В процессе карбонизации, сопровождающейся кристаллизацией бикарбоната натрия, внутренние поверхности карбонизационной колонны пссте-пенно покрываются коркой кристаллизующегося из раствора NaH Oз. [c.125]

    Очистка. В процессе исследования кинетики дегидрохлорирования замещенных хлоруглеводородов Бартон и Хоулет [183] разработали общий метод очистки хлоруглеводородов. Вещество многократно встряхивают с концентрированной серной кислотой до тех пор, пока добавление новых порций кислоты не перестанет приводить к появлению окраски. После этого хлорсодержащее вещество промывают сначала раствором бикарбоната натрия, а затем водой, сущат хлористым кальцием и перегоняют на эффективной колонке. В заключение вещество подвергают дробной кристаллизации до достижения постоянной в пределах Г температуры замерзания. При каждой кристаллизации вымораживают только половину жидкости, а остаток отбрасывают. [c.383]

    S-Пентаацетат фруктозы 40 г чисгой фруктозы прибавляют в виде мелкого порошка к смеси 240 г уксусно1о ангидрида и IQ-iji концентрированной серной кислоты, охлажденной смесью льда с поваренной солью и размешиваемой при помощи мотора. Если по истечении 1 часа фруктоза растворится, раствор взбалтывают с 500 слА ледяной воды, нейтрализуют в широкой чашке бикарбонатом и отфильтровывают от избытка 1юследне1 0. Осадок бикарбоната промывают хлорофор.мом, им же экстрагируют фильтрат и выпаривают хлороформный раствор в вакууме до консистенции сиропа, который продолжают концентрировать продуванием тока воздуха до тех пор, пока не исчезнет запах уксусной кислоты. Затем сироп оставляют стоять в вакуум-эксикаторе над едким кали, причем в результате перемешивания начинается кристаллизация. Кристаллы растирают в ступке с небольшим количе- ством эфира и отсасывают. Они могут быть перекристаллизошшы из эфира. Выход [c.304]

    Планомерные исследования по разработке промышленного метода производства кристаллов пьезокварца начались в 30-е годы в Германии. В изотермическом режиме в водных растворах бикарбоната натрия при 60 7о-ном заполнении свободного пространства кристаллизатора при температуре 410°С Р. Наккеном были выращены отдельные кристаллы массой до 5 г. В качестве питающего материала использовалось кварцевое стекло, которое обладало на порядок большей растворимостью по сравнению с кварцем. Вследствие различной растворимости двух сосуществующих фаз диоксида кремния в изотермических условиях раствор оказывался пересыщенным в отношении кварца. Кварцевое стекло растворялось и непрерывно питало раствор, а кристаллическая затравка росла. Однако процесс переноса вещества ограничивался кристаллизацией кварцевого стекла, что привело к необходимости осуществления циклического процесса для замены шихтового материала. Перенос нарастающих кристаллов из опыта в опыт при- [c.4]

    В последующих экспериментах Б. У. Барщевский снизил тем-пературу кристаллизации до 360—370 С и давление до 30— 40 МПа. При этих параметрах в растворах бикарбоната натрия в отдельных опытах длительностью до 16 сут удалось вырастить кристаллы массой до 97 г. [c.7]

    К несколько отличающимся результатам относительно характера функциональной связи скоростей роста кристаллов и температуры кристаллизации пришли А. А. Чернов и В. А. Кузнецов [29], установившие, что для роста кварца в растворах NaOH и КОН имеет место отклонение от линейного характера зависимости 1ди от, 1/7, тогда как для кристаллизации кварца в растворах, карбоната и бикарбоната натрия и калия наблюдается линейная зависимость. Полученные А. А. Черновым и В. А. Кузнецовым энергии активации для разных сред и разных кристаллографических направлений приведены в табл. 4. Концентрация растворов во всех опытах составляла 0,5 М. Коэффициент заполнения во всех опытах также одинаков и был равен 0,75. [c.39]

    Устойчивость поверхности пинакоида в значительной степени зависит от состава исходного раствора и концентрации примеси алюминия. Так, в растворах бикарбоната натрия на базисных затравках ни разу не удалось получить однородные кристаллы. Материал пирамиды <с> таких образцов пронизан многочисленными тонкими трехгранными каналами, параллельными оптической оси. Вся поверхность базиса сразу же после начала наращивания покрывается треугольными неглубокими ямками, размеры и глубина (около 1 мм) которых почти не зависят от толщины наросшего слоя. Подобное строение рельефа грани с обнаруживается при кристаллизации кварца из низкоконцентрированных (2—3%) содовых растворов, а также в случае введения добавки СО2 (давление СО2 в системе при комнатной температуре равно 18 МПа) в 7 %-ный содовый раствор. Вырождение грани с происходит часто также в кристаллах, синтезированных из калиевых сред (К2СО3, КОН). В этих растворах твердые частицы осадка на поверхности затравки и в наросших слоях всегда дают начало тончайшим каналам, параллельным оси г. Экспериментально установлено, что при прочих равных условиях вырождение неустойчивых граней происходит более активно в растворах гидроокиси натрия по сравнению с растворами карбоната натрия. Поэтому выращивание из содовых растворов на одном и том же оборудовании (р = соп51) можно вести при более высоких температурах, что дает возможность снизить концентрацию примеси натрия в кварце. [c.170]

    На ПЭЗ ВИЛАР проведена работа по выделению суммы гликозидов из наперстянки шерстистой. Сырьё экстрагировали этилацетатом, пасыщеппым для стабилизации водородного показателя 2,5% водным раствором бикарбоната натрия [2]. Данный экстрагент отличается избирательностью и не способствует фермептативпому гидролизу гликозидов [3]. Во время экстракций периодически ведётся рН-коптроль экстрагента. Наиболее приемлемым является pH от 6,0 до 7,0, что обеспечивает максимальный выход суммы гликозидов. Это объясняется тем, что снижение pH раствора ниже 5,0 приводит к разрушению гликозидов из-за их гидролиза в кислой среде. Повышение pH более 7,0 обусловливает меньший выход суммы гликозидов в связи с размыканием лактонного кольца и дезацетилированием [4]. Экстракты пропускали через окись алюминия с оптимальным размером частиц и проводили хроматографическую очистку лапатозидов АВС от балластных веществ, таких как флавоноиды, каротиноиды, хлорофиллы, смолы и др. ТСХ-контроль осуществляли на силуфоле в системе метанол- этилацетат (1 4), проявитель- пары соляной кислоты [5]. Фракции, содержащие сумму гликозидов объединяли для кристаллизации. [c.172]

    Работы по гидротермальному синтезу кварца с 1950 г. проводились под руководством П. Г. Позднякова, а в период 1952— 1954 гг.—А. А. Воронковым, В. Д. Митькиным, Б. У. Барщев-ским. Использовались автоклавы вместимостью 0,14—1,2 л. Для наращивания кристаллов применялись кварцевые пластины среза АТ, а в качестве шихты — кварцевый песок. Вначале использовались высококонцентрированные (до 30 7о) растворы бикарбоната натрия. Однако в связи с обильным выделением силиката натрия при расслоении раствора в дальнейших экспериментах были использованы водные растворы 5 % Ыа2СОз-НО,5 % ЫаОН с добавкой 2—3 7о хлорида натрия. Кристаллизация осуществлялась в интервале температур 420—430 °С при температурном перепаде 10—15 С и давлениях порядка 100 МПа. В результате были получены визуально прозрачные кристаллы массой до 100 г, выращенные со скоростью до 0,7 мм/сут, и проведены исследования их пьезоэлектрических характеристик, подтвердившие идентичность резонаторных свойств образцов из естественного и искусственного кварца. [c.7]


Смотреть страницы где упоминается термин Бикарбонат кристаллизация: [c.112]    [c.300]    [c.234]    [c.209]    [c.300]    [c.70]    [c.20]    [c.76]    [c.172]    [c.124]    [c.254]    [c.445]    [c.302]    [c.341]    [c.43]    [c.67]    [c.340]    [c.19]    [c.7]    [c.340]    [c.198]   
Производство кальцинированной соды (1959) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Бикарбонат натрия скорость кристаллизации

Бикарбонаты

Кристаллизация бикарбоната натрия

Скорость кристаллизации бикарбоната



© 2024 chem21.info Реклама на сайте