Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенные растворы, методы получения

Рис. 10.10. Изотерма поверхностного избытка (Г) в растворах поверхностно-активного вещества. Структура поверхностного слоя а — чистый растворитель б — ненасыщенный мономолекулярный слой ПАВ в — насыщенный мономолекулярный слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал способ получения активных углей, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способон активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле. Современные методы получения и т .следования активных углей в нашей стране разработаны М. М. Дз бининым. Удельная поверхность активных углей достигает 1000 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо — углеводороды. Рис. 10.10. <a href="/info/8760">Изотерма поверхностного</a> избытка (Г) в <a href="/info/73320">растворах поверхностно-активного вещества</a>. <a href="/info/4510">Структура поверхностного слоя</a> а — <a href="/info/129270">чистый растворитель</a> б — ненасыщенный <a href="/info/4461">мономолекулярный слой</a> ПАВ в — <a href="/info/740682">насыщенный мономолекулярный</a> слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал <a href="/info/300352">способ получения активных</a> углей, предложив их в <a href="/info/1439224">качестве универсальных</a> поглотителей отравляющих веществ, и совместно с Э. Л. <a href="/info/677794">Кумантом</a> сконструировал угольный противогаз с резиновой маской. Один из первых способон <a href="/info/311838">активирования древесного</a> угля состоял в обработке его <a href="/info/13965">перегретым паром</a> для удаления <a href="/info/56063">смолистых веществ</a>, образующихся при <a href="/info/83829">сухой перегонке древесины</a> и заполняющих поры в обычном угле. <a href="/info/658568">Современные методы получения</a> и т .следования активных углей в <a href="/info/1692382">нашей стране</a> разработаны М. М. Дз бининым. <a href="/info/1443951">Удельная поверхность активных</a> углей достигает 1000 на грамм. <a href="/info/4303">Активный уголь</a> является <a href="/info/15361">гидрофобным адсорбентом</a>, плохо <a href="/info/1634398">поглощает пары</a> воды и очень хорошо — углеводороды.

    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]

    Для определения гигроскопических свойств используют образец вещества, не содержащий гигроскопической влаги. Для этого его подвергают сушке при 50—60 °С. Коэффициент гигроскопичности находят динамическим методом при 20 °С в проточно-весовой установке, пропуская через навеску образца ( -0,2 г) газ (азот) с относительной влажностью 81 % (это среднегодовая относительная влажность воздуха для Европейской части СССР). Для получения газа с такой влажностью его пропускают через насыщенный раствор сульфата аммония. При скорости газа 0,5—0,6м/мин исключается влияние на скорость сорбции внешней диффузии паров воды к поверхности образца. Среднеквадратичная погрешность определения у не превышает 10%. Предложена следующая шкала гигроскопичности веществ по значению у, измеренному таким способом  [c.278]


    Кристаллизация из растворов основана на ограниченной растворимости твердых веществ. Раствор, содержащий максимальное количество растворенного вещества в данном количестве растворителя при определенной температуре, называется насыщенным-, если раствор содержит большее количество растворенного вещества, то он является пересыщенным-, если же он содержит меньшее количество растворенного вещества, то называется ненасыщенным. Пересыщенные растворы неустойчивы из них выделяется избыточное количество растворенного вещества, т. е. происходит процесс кристаллизации. После выделения кристаллов раствор становится насыщенным. Этот насыщенный раствор, полученный в результате выделения кристаллов, называется маточным раствором, или маточником. Отделение маточного раствора от кристаллов производится центрифугированием и другими методами, рассмотренными в главе 8. [c.512]

    На рис. 20 приведены зависимости активного сопротивления от времени, характеризующие проницаемость различных полимерных покрытий на основе эпоксидно-фенолофурфурольно-формальдегидных смол в насыщенном растворе NaF, полученных методом измерения импеданса [173]. [c.138]

    Относительно высокая температура плавления бензола (5,53°С) и сравнительно низкая теплота плавления (9,843 кДж/моль), а также то, что основные примеси ( н-гептан, циклогексан, метилциклогексан) не образуют с бензолом твердых растворов [78], создают предпосылки для очистки его от насыщенных углеводородов методом кристаллизации. Кристаллизацией из исходного бензола чистотой 99,67% с выходом 78,5% получен бензол с общим содержанием примесей 0,03% [79]. [c.234]

    Приготовьте насыщенные растворы (10—20 мл) хлорида натрия в соляной кислоте различных концентраций 1 0,1 0,01 М или в кислоте, полученной 2—10-кратным разбавлением имеющейся в лаборатории концентрированной кислоты. Тем же методом определите растворимость хлорида атрия. При выпаривании раствора сушильный шкаф следует поместить под тягу, чтобы хлороводород не попадал в воздух лаборатории. [c.237]

    Метод растворимости основан на достижении состояния равновесия и аналитическом определении состава жидкой фазы, находящейся при постоянной температуре в равновесии с твердой фазой, и состава твердой фазы, выделенной из жидкости. По полученным данным строят диаграммы растворимости в координатах температура— состав насыщенных растворов. [c.224]

    Метод основан на удалении всех элементов, мешающих полярографическому определению индия, цементацией их цинковой амальгамой в присутствии не менее 20% сульфатов. Индий при этом остается в растворе в виде комплексного сульфатного аниона 1п(504)] , который не восстанавливается цинковой амальгамой. Соединения таких элементов, как Аз, 5Ь, В1, Си, Те, 5е, 8п, Т1, Сё и некоторые другие, энергично восстанавливаются цинковой амальгамой, растворяясь при этом в ртути (Сс1, 5п, Т1, Си) или выделяясь в виде рыхлого, черного осадка. Элементы высших валентностей Ре+ +, Сг , Т ) восстанавливаются до низших. В полученном растворе индий определяют полярографически после введения 10% хлорида натрия от массы раствора. Метод может быть применен для определения индия в производственных продуктах и отходах. Потенциал полуволны для индия —1,0 в относительно насыщенного каломельного электрода. [c.370]

    Опубликован обзор методов получения двухатомных фенолов [33]. Из персульфатов лучше всего применять персульфат калия, хотя можно использовать также и соль аммония 1341. Применяемое иногда добавление хлорного железа не дает никаких преимуществ, но в некоторых случаях, если реакцию проводят в насыщенных растворах хлористого натрия или сульфата натрия, выход улучшается. Если пара-положение занято, заместитель направляется в ортоположение. Эта реакция дает низкие выходы. Самый лучший выход (50%) получен с хлоргидрохиноном. Из фенола выход гидрохинона составил 18%. Этот метод позволяет получить чистый продукт так как соль, являющуюся промежуточным соединением, можно очистить от органических примесей экстракцией эфиром. Описанный метод применяют для синтеза соединений ряда кумарина и флавона, так как по этой реакции можно ввести гидроксильную группу в желаемое положение. Аналогичная реакция наблюдается и для арил-аминов [351, но в этом случае образуются только о-аминофенолы. К сожалению, выходы также невелики, особенно на первой стадии, [c.302]

    Флотация растворимых минералов применяется взамен более сложных и менее экономичных методов галлургии, основанных на различной растворимости компонентов разделяемой системы. Основная особенность флотации растворимых минералов (как правило, солей) заключается в том, что средой для флотации служит насыщенный раствор солей, входящих в состав обогащаемого сырья. Разделение солей ведется при аэрировании пульпы и при помощи селективных флотореагентов — собирателей. Реагенты-пенообразователи при флотации растворимых солей применяются не всегда, так как многие насыщенные солевые растворы сами по себе обладают пенообразующей способностью. Особо важное значение имеет регулирование pH среды при помощи реагентов-регуляторов, которые способствуют действию реагентов-коллекторов. Метод флотации применяется, например, для получения хлорида калия из сильвинита (минерал Na l-K l), из насыщенного солевого раствора, содержащего примерно до 100 г/дм КС и 250 г/дм Na l. Реагентами-коллекторами служат амины жирного ряда с числом углеродных атомов С б—С20. [c.17]


    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]

    Насыщенный раствор 10 г нитрата серебра обрабатывают в конической колбе раствором 2,5 г едкого натра в 00 мл воды. Полученный темно-коричневый осадок тщательно промывают методом декантации. [c.691]

    Из двух методов получения пересыщенных растворов—путем испарения части растворителя и путем охлаждения растворов, насыщенных при нагревании,—предпочитают пользоваться последним. При кристаллизации через охлаждение пользуются такими растворителями, в которых растворимость кристаллизуемого вещества резко изменяется с температурой. Существенной является также способность растворителя хорошо растворять примеси чем больше разница в величинах растворимости основного продукта и примесей, тем легче осуществляется очистка. Нужно отметить, что загрязнения могут сильно влиять на скорость кристаллизации и на полноту выделения кристаллизуемого вещества из раствора. Иногда в присутствии значительного количества примесей кристаллизация может вообще не наступить, а если и удается добиться выделения кристаллов, то потери вещества в маточном растворе оказываются слишком большими. Поэтому во многих случаях к очистке вещества путем кристаллизации следует прибегать лишь после освобождения его от значительной части примесей другими способами, например перегонкой. [c.18]

    Наличие комплексообразования в растворе приводит к значительным отклонениям от схемы, опирающейся на теорию внутреннего давления. Предприняты попытки [6] вычислить концентрацию иода, связанного в комплекс с растворителем, по разности общей концентрации в насыщенном растворе и концентрации свободного иода, рассчитанного по уравнению Гильдебранда-Скетчарда, основанные на предположении, что концентрация свободного иода в растворе должна соответствовать теории регулярных растворов. Вместе с тем различие в стандартных состояниях (насыщенный раствор в данном растворителе и одномолярный раствор в инертном растворителе, обладающий свойствами бесконечно разбавленного) не позволяет корректно сопоставить равновесные концентрации комплексов, полученные по данному методу, и на основе констант устойчивости донорно-акцепторных комплексов, определенных экспериментально. [c.13]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    Возвращаясь теперь к обсуждению методов получения фторидов, которые имеют свои особенности, вспомним, что сравнительно мало сольватированные фторидные ионные пары в МФК-реакциях выступают и как нуклеофилы, и как основания. Это лриводит к тому, что возрастает конкуренция между замещением, гидролизом и элиминированием. Монтанари и сотр. [52] проводили реакцию следующим образом первичный или вторичный алкилбромид, хлорид или мезилат встряхивали при 100—160 °С с насыщенным раствором КР и каталитическим количеством трибутилгексадецилфосфонийбромида в течение [c.114]

    Выпавший осадок Ag N после отделения центрифугированием и растворения в 14,5 М HNO3 идентифицируют микрокристаллоскопическим методом. Раствор, полностью освобожденный от H N, помещают в установку для получения газов и используют для обнаружения галогенидов и ионов S N-. В присутствии Hg + образуется очень слабо диссоциированный Hg( N)2, мешающий обнаружению цианидов. Применяя большой избыток С1- (насыщение раствора хлоридом натрия), можно получить существенное увеличение концентрации N", как это следует из уравнения реакции  [c.56]

    Получение пирофорного железа. К горячему насыщенному раствору железного купороса Ре804-7Н20, содержащему 6 г последнего, прилейте горячий насыщенный раствор оксалата натрия, приготовленный из 3 г соли. Выпавший осадок отфильтруйте на воронке Бюхнера, предварительно промыв его несколько раз горячей водой по методу декантации. Полученный оксалат железа высушите при 100°С. Полученную соль поместите в сухую пробирку, укрепите ее в горизонтальном положении на штативе и нагревайте пламенем газовой горелки до тех пор, пока порошок не станет черным и прекратится выделение газа. После этого нагревание прекратите и быстро закройте пробирку пробкой, чтобы избежать окисления железа. После охлаждения пробирки порошкообразное железо высыпьте на лист асбеста с высоты 20—30 см. [c.279]

    Выполнение работы. 1. Приготовление суспензии BaSO и построение градуировочного графика. В мерную колбу вместимостью 100 мл пипеткой помещают 20 мл стандартного раствора серной кислоты и доводят до метки водой (раствор I). Затем в мерные колбы вместимостью 50 мл вносят по 2 мл насыщенного раствора Ba lj, разбавляют немного водой, прибавляют по 2 мл раствора желатина и вводят при перемещивании точно отмеренные объемы раствора I - 10 8 6 4 и 2 мл (каждый из растворов готовят не раньше чем за 5 мин до начала измерений). Содержимое каждой колбы доводят до метки водой, перемещивают, переносят в кювету прибора (/ = 5 см> и ровно через 5 мин после приготовления измеряют оптическую плотность с использованием зеленого светофильтра. В нефелометрическом методе измерения начинают с раствора, имеющего наиболее высокую концентрацию H2SO4, и поступают в соответствии с правилами работы на нефелометре. Для турбидиметрического метода порядок измерения не имеет значения. По полученным данным строят градуировочный график в координатах оптическая плотность - концентрация сульфат-иона, мг/мл [или Лаж - Ig (S0 ) для нефелометрического варианта]. [c.185]

    Получение золя Ре(ОН)з методом пептизации. К 5 мл 1 М Fe l.T в колбе на 250 мл добавить 100 мл воды. Осадить Fe + небольшим избытком раствора аммиака. Колбу заполнить водой доверху. Дать осадку отстояться. Осадок много кратно декантировать до нсчезнованпя запаха NH3. Объем раствора довести до 150 мл. Добавить пептизатор — 15—20 капель насыщенного раствора РеС1з. Нагреть раствор на водяной бане, взбалтывая. Если осадок останется, то добавить еще несколько капель пептизатора, продолжая нагревание. [c.271]

    Существуют и другие методы получения карбидов взаимодействие ацетилена с водными растворами солей, насыщение металлов углеродом с последующим растворением некарбидной фазы в кислоте и т. д. [c.55]

    Закись азота (т. пл. —91, т. кип. —89 °С) является постоянной составной частью воздуха (0,00005 объемн.%). Критическая температура этого газа равна +36°С при критическом давлении 72 атм. Один объем воды поглощает при О °С около 1,3, а при 25 °С — 0,6 объема N2O. В результате охлаждения насыщенных растворов образуется кристаллогидрат N2O 6Н2О, нагревание которого может служить методом получения оч нь чистой N2O. Для наркоза обычно применяется смесь 80% закиси азота с 20% кислорода. [c.419]

    Конденсационный метод получения золей, а) К 100 мл воды добавить по каплям 2%-ный спиртовый раствор канифоли или насыщенный спиртовый раствор серы. Получается опалес-цирующий коллоидный раствор канифоли или серы. Какую окраску имеет полученный гидрозоль  [c.248]

    Как правило, сульфокислоты выделяют не в свободном виде, а в виде их натриевых солей. По окончании сульфирования реакционную смесь выливают в воду, полученный раствор частично нейтрализуют бикарбонатом натрия и нагревают до кипения. Затем добавляют хлористый натрий до получения насыщенного раствора и раствор оставляют стоять для кристаллизации. Для высаливания сульфонатов-с небольшим молекулярным весом требуется большой избыток хлористого натрия, что приводит к загрязнению продуктов реакции. В таком-случае чистый сульфонат можно получить перекристаллизацией из абсолютного этилового спирта, в котором натриевые соли низкомолекулярных сульфокислот умеренно растворимы, а хлористый натрий совершенно нерастворим. Натриевые соли высокомолекулярных сульфокислот, которые нерастворимы в этиловом и метиловом спиртах, также могут быть получены в чистом, свободном от соли виде. Для этого-вначале применяют повторное высаливание продуктов из их водных растворов, используя ацьтат натрия вместо хлористого натрия. Полученный сульфонат сушат, растирают и многократно экстрагируют кипящим метиловым спиртом, чтобы удалить примеси ацетата натрия, который сравнительно легко растворяется в спирте. Другой метод выделения сульфоната натрия из реакционной смеси, содержащей избыток серной кислоты, состоит в нейтрализации разбавленной смеси гидроокисью кальция или же карбонатом бария или свинца. Образующийся сульфонат экстрагируют горячей водой и таким путем отделяют от примеси неорганического сульфата. Затем к водному экстракту добавляют углекислый натрий при этом углекислые СОЛИ кальция, бария или свинца выпадают в осадок. Из фильтрата после упаривания выделяют натриевую соль сульфокислоты. Сульфенат свинца можно разло- [c.222]

    При полимеризации происходит заметное саморазогревание акрилонитрила (теплота полимеризации 17,3 + 0,5 кал моль Полимер акрилонитрила нерастворим в обычных растворителях, но растворяется в насыщенных водных растворах Ь1Вг, КаСК5 или четвертичных аммониевых оснований, а также в ди-метилформамиде, в динитрилах янтарной и малеиновой кислоты, в тетраметиленсульфоне, в нитро- и нитрозоалкиламинах Основными методами получения акрилонитрила являются  [c.53]

    Этот недостаток несколько устраняется двухстадниным методом получения гексогена из уротропииа или нз формальдешда [63]. В первой стадии полу чают уротропин путем насыщения формалина (30%-ного раствора формальдегида) газообразным аммиаком  [c.263]

    Около 1 г двуокиси титана ТЮг (мол. вес 79,90) сплавляют в платиновом тигле или чашке с 8 г пиросульфата калия. Тигель нагревают до темно-красного каления, пока масса в тигле не расплавится и жидкость станет совершенно однородной. Плав охлаждают и растворяют в 60 мл разбавленной 1 5 серной кислоты при слабом нагревании нерастворимый остаток отфильтровывают. Фильтрат переводят в мерную колбу емк. 250 мл и разбавляют водой до метки. Титр раствора устанавливают весовым методом, отбирая для этого 50.0 мл раствора. Титан осаждают аммиаком в виде Т1(0Н)4, осадок отфильтровывают, озоляют и прокаливают при 900—1000° С. Взвешивают Т10г. Для установки титра железо-аммонийных квасцов пропускают 50,0 мл раствора титана через кадмиевый редуктор для восстановления. Полученный трехвалентный титан титруют железо-аммонийными квасцами в присутствии 10—15 капель насыщенного раствора роданида аммония. [c.214]

    К насыщенному раствору (NH4)2S04 добавляют 2 н. NaOH и доводят pH до 7,8. При постоянном перемешивании медленно, по каплям к 50 мл сыворотки кролика добавляют 80 мл насыщенного раствора сульфата аммония (pH 7,8) и перемешивают в течение 2—3 ч. Центрифугируют суспензию при комнатной температуре 30 мин при 1500 g. Первый осадок содержит все -у-глобулины, другие глобулины и следы альбумина. Растворяют осадок в дистиллированной воде до начального объема сыворотки (50 мл). Очищают фракцию у-глобули-нов вторым и третьим осаждениями. После третьего осаждения растворяют осадок в боратном буфере (pH 8,45) до конечного объема 20— 25 мл. Удаляют сульфат аммония диализом при 4°С против боратного буфера в течение 2—3 дней со сменой буфера утром и вечером. Полученный после диализа препарат иммуноглобулинов обычно содержит небольшой осадок денатурированного белка и слегка опалесцирует. Центрифугируют при 4° С в течение 30 мин при 1400 s. В полученном препарате проверяют содержание белка и титров антител. Определяют белковый состав методом электрофореза в полиакриламидном геле в присутствии ДСН (с. 119). Если полученный препарат у-глобулинов не отвечает требованиям эксперимента по стоте, проводят дальнейшую очистку с применением ионообменной хроматографии на ДЭАЭ-целлюлозе. [c.308]

    Подобный способ с успехом применялся в течение ряда лет для получения этиловых эфиров лауриновой, каприловой и миристиновой кислот алкоголизом кокосового масла (1 е) в растворе этилового спирта (1 900 е) с применением хлористого водорода (50 г) в качестве катализатора . Метод синтеза в данном случае несколько отличается от описанного выше. Алкоголиз заканчивается через 15—20 час., после чего раствор нейтрализуют по метилоранжу углекислым барием. Смесь приливают к равному объему насыщенного раствора хлористого натрия, в результате чего выделяется 1 100—1 300 е смеси неочищенных этиловых эфиров. Эту смесь промывают водой и подвергают дробной перегонке, как было указано выше. Из 1 ООО s кокосового масла было полу- [c.311]

    Цианистый бензил, полученный согласно описанному способу, кипит в пределах 5° и вполне пригоден для большинства целей, например для получения фенилуксусной кислоты (стр. 440) или ее эфира (стр. 557). Однако вследствие примеси изонитрила (бензилизоцианида) нитрил обладает неприятным запахом и при хранении часто заметно окрашивается. Дж. F. Джонсон предложил следующий метод очистки для удаления изонитрила и получения бесцветного, как вода, продукта, который не окрашивается даже при стоянии в течение нескольких месяцев. Перегнанный один раз цианистый бензил энергично взбалтывают в течение 5 мин. с равным объемом теплой (бО ") 50%-ной серной кислоты, полученной из 275 мл концентрированной серной кислоты и 500 мл воды. Цианистый бензил отделяют, промывают равным объемом насыщенного раствора бикарбоната натрия, а затем равньш объе.мом полунасыщенного раствора хлористого натрия. После этого продукт сушат и перегоняют в вакуу.ме. Потери при промывке ничтожны. [c.503]

    Существует также метод получения гидрокарбоната из карбонатд натрия, который заключается в пропускании СО2 под давлением через насыщенный раствор при 75 С [реакция (5) справа налево]. [c.92]

    Окиси трис-(алкилбензил) фосфинов до сих пор получены не были. Для получения окисей замещенных трибензилфос-финов мы использовали метод [1], -изменив способ обработки реакционной смеси вместо однократной обработки реакционной смеси раствором сульфита натрия проводили дополнительную обработку насыщенным раствором едкого натра, после чего полутвердую массу обрабатывали последовательно активированным углем в метанольном растворе и водным раствором сульфита йатрия. [c.114]

    Полученные П. И. Палеем и И. С. Скляренко (1956 г.) данные по осаждению Ри(1У) из нитратных растворов введением в раствор избытка сульфата натрия и добавлением спирта показали количест1венное осаждение плутония. Проводят осаждение из 1,5 N растворов НЫОз. Для этого добавляют насыщенный раствор сульфата натрия и двойной объем этилового спирта. Уран, присутствующий в равных с плутонием количествах, в основном на этой операции сбрасывается. В случае конечного определения плутония весовым методом необходима доочистка от урана другим методом (иодатное осаждение и т. п.). Все элементы, образующие труднорастворимые сульфаты (Ag, РЬ, Са и др.), этим осаждением не отделяются. Метод дает хорошее отделение от Ре, N1, Сг, Мп и других элементов. [c.293]


Смотреть страницы где упоминается термин Насыщенные растворы, методы получения: [c.27]    [c.86]    [c.201]    [c.331]    [c.94]    [c.272]    [c.336]    [c.79]    [c.119]    [c.143]    [c.315]    [c.37]    [c.93]   
Техника физико-химических исследований при высоких давлениях (1958) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы методы получения

Растворы насыщенные



© 2025 chem21.info Реклама на сайте