Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт в шлаках

    Углеродистые материалы, в том числе нефтяные коксы, могут быть использованы при шахтной плавке окисленных никелевых и медных руд, кобальт- и медьсодержащих шлаков и др. Поскольку все эти виды плавок имеют много общего, ниже в качестве примера рассматривается только плавка окисленных никелевых руд. [c.107]

    При получении кобальта из концентратов или конверторных шлаков растворы содержат также значительные примеси никеля, железа, меди и других металлов. Благодаря высокой катодной поляризации при выделении кобальта становится возможным включение в катодный осадок не только меди, но и никеля, и железа. Поэтому для получения чистого кобальта требуется весьма тщательная очистка раствора от этих примесей, особенно от никеля. [c.293]


    Осаждение основных ацетатов и др. гидролитические методы осаждения. При анализе различных руд, шлаков и сплавов необходимо отделять алюминий и железо от марганца, никеля, кобальта, цинка и др. элементов. При осаждении гидроокисью аммония, как уже отмечалось, полного разделения не происходит, так как осадок гидроокисей алюминия и железа захватывает примеси других элементов. Кроме того, при большом избытке гидроокиси аммония заметные количества алюминия переходят в раствор в виде алюмината. К тому же обычный ход анализа может нарушаться вследствие присутствия фосфатов. [c.97]

    Для извлечения ценных спутников (Аи, Ag, Те и др.) и для удаления вредных примесей черновая медь подвергается огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка, кобальта окисляются, переходят в шлак и удаляются. Медь же разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании (см. разд. 38.1). [c.534]

    В природе никель встречается в сульфидных медно-никелевых или в никелевых окисленных рудах. Сульфидные руды, содержащие, кроме никеля и меди, еще кобальт, железо и платиновые металлы, сперва подвергают флотационному обогащению (если руды бедные). Затем концентрат или руду подвергают плавке в электрических, отражательных или шахтных печах и получают медно-никелевый штейн (в который переходят платиновые металлы, а также большая часть кобальта) и отвальный шлак. Штейн продувают воздухом в конверторе. Железо, окисляясь при продувке, переходит в шлак, в конверторе же остается расплав, содержащий сульфиды никеля и меди с небольшой примесью железа. Этот расплав (так называемый файнштейн) после отливки и медленного охлаждения поступает на дробление и флотационное отделение сульфида никеля от сульфида меди. Медный концентрат от флотации файн-штейна поступает на извлечение меди (см. главу I), а никелевый подвергается окислительному обжигу в печах кипящего слоя . Получающийся огарок затем плавят с восстановителем в отражательных или электропечах. Полученный черновой никель разливают на аноды, содержащие обычно 88—95% N1, 1,5—6% Си, 0,5— 2,5% Ре, 0,5—2% Со, 0,5—2% 8, немного кремния, углерода и окислов (железа, никеля и кобальта и др.). [c.75]

    Как видно из рис. 4.1, в процессе пирометаллургической переработки никелевых руд железо отделяется от основных компонентов в результате плавки штейна в конверторе с продувкой воздуха. Плавка часто осуществляется таким образом, чтобы в шлак выводилось не все железо, а часть его оставалась в штейне. При этом в штейне удерживается и кобальт, что позволяет позже, в процессе рафинирования никеля, выводить при очистке раствора соединения кобальта и в дальнейшем перерабатывать их. Иногда кобальт специально переводят в конверторный шлак, из которого его затем извлекают. Поскольку оксиды меди и никеля в конце продувки будут взаимодействовать со своими сульфидами по реакции N 384 -Ь 4№0 --I- 250  [c.404]


    Электроэкстракция кобальта. В этом процессе применяют промежуточный кобальтсодержащий материал других производств, например, богатые кобальтом конверторные шлаки, кобальтовый шлам из производства цинка или никеля. Если эти материалы не обладают достаточно хорошей растворимостью в кислом анолите электролизеров, то их предварительно перерабатывают. Так, при применении конверторного шлака его подвергают вначале восстановительной плавке в электрических печах с получением сплава, содержащего 6—7% Со, 60% Fe, 30% Ni и 6% Си. Затем этот сплав анодно растворяют в сульфатных нли хлоридных электролитах. В случае сульфатных электролитов получают раствор, содержащий 7—8% Со +, мно- го железа и никеля. Эти растворы после очистки подвергают электроэкстракции. Из хлоридного электролита осаждают малорастворимые гидраты, которые в дальнейшем могут быть растворены в кислом анолите электролизеров для экстракции кобальта из сульфатных электролитов. [c.414]

    Важнейшей народнохозяйственной проблемой является переработка шлаков пирометаллургических производств. Шлаки содержат оксиды кремния, алюминия, кальция, магния, железа, марганца, меди, никеля, кобальта, свинца, кадмия, редких металлов и других элементов. Состав шлаков зависит от вида сырья металлургического процесса. [c.724]

    Никель обычно извлекают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руд выделяют медный и никелевый концентраты. Никелевый концентрат вместе с флюсами плавят в электрических или отражательных печах с целью выжигания серы в виде бОз, удаления железа в виде силиката в шлам и концентрирования никеля в металлизированный штейн, содержащий до 10— 15% никеля и 15-25% серы. Наряду с никелем в штейн переходит часть железа, кобальт, медь, благородные металлы. Затем штейн окисляют в конверторах с помощью вдуваемого воздуха и в присутствии флюса. Более реакционноспособное железо практически полностью переходит в шлак, а получающийся файнштейн — сплав Си с N1 — после охлаждения разделяют на Си и N1 с помощью флотационного или карбонильного процессов. Никелевый концентрат после флотации обжигают в кипящем слое до N10 и восстанавливают коксом в электродуговых печах до чернового металла. Черновой металл рафинируют электролизом до содержания никеля 99,99%. При разделении карбонильным методом файнштейн обрабатывают СО при 100—200 атм и 200-250 °С, а полученный карбонил N1 (С0)4 разлагают при атмосферном давлении и температуре около 200 "С. При этом получают никелевый порошок или никелевую дробь диаметром до 10 мм. [c.186]

    На никелевых заводах первичной металлургии в некоторых случаях применяют гидрометаллургическую переработку отходов. Однако при этом извлекается только кобальт. Все остальные металлы-спутники теряются со шлаком, растворами, кеками (Худяков..., 1993 г.). [c.132]

    Кобальт содержится в разнообразных природных и искусственных материалах — рудах, концентратах, шлаках, минералах и силикатных породах, сталях и сплавах, чистых металлах, водах, растениях и животных организмах, почвах, удобрениях, и т. д. Все эти материалы различаются между собой прежде всего по химическому составу. Подготовка вещества к анализу и методы переведения в раствор во многих случаях неодинаковы и зависят от характера анализируемых материалов, которые сильно отличаются друг от друга по количеству и природе сопутствующих кобальту элементов. Эта особенность обусловливает необходимость надлежащего выбора того или иного метода отделения кобальта от мешающих определению элементов или устранения влияния последних применением подходящих маскирующих веществ. Содержание кобальта в исследуемых объектах колеблется в довольно широких пределах — от тысячных долей до десятков процентов. Поэтому метод конечного определения кобальта должен быть выбран в соответствии с содержанием кобальта. [c.174]

    Определение кобальта в рудах, шлаках и силикатах. [c.174]

    ОПРЕДЕЛЕНИЕ КОБАЛЬТА В РУДАХ, ШЛАКАХ И СИЛИКАТАХ [c.175]

    Вместе с кобальтом в рудах и шлаках содержатся железо, никель, медь, марганец, алюминий, кальций, магний, мышьяк, сера. Содержание железа в кобальтовых рудах колеблется от [c.175]

    Аналогичный способ применяется при определении кобальта в шлаках [316]. [c.180]

    Кобальт в шлаке определяют аналогично. Для определения кобальта в марганцовых рудах применяют 1-нитрозо-2-нафтол [954]. [c.181]

    Особые преимущества данный процесс имеет при плавлении дроссов, содержащих значительные количества никеля или кобальта и мышьяка, которые реагируют с образованием шпейзы. Шпейза имеет промежуточную плотность между плотностями штейна и металла, а температура плавления ее выше, чем у штейна и металла. Нагрев шлака с помощью электричества позволяет поддерживать всю образовавшуюся шпейзу в расплавленном состоянии, сводя к минимуму ее осаждение на стенках печи [c.229]

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]


    Определение кобальта в рудах и отвальных шлаках [c.133]

    Никель и кобальт представляют собой элементы с близкими химическими свойствами и постоянно сопутствуют друг другу в рудах и минералах. Эти элементы часто приходится определять в рудах, сталях, сплавах, шлаках и других природных и технических материалах. Главная трудность полярографического определения обоих элементов при совместном присутствии заключается в том, что восстановление их ионов происходит при очень близких [c.250]

    Окисление аммиака Сплавляют 70 частей кобальта (очищенного) с 3,5—5 частями углекислого кальция и 1,7—3,5 частями фтористого кальция, металл очищают от шлака и превращают в закись-окись кобальта, ее измельчают (просеивают через сито 100 меш), смешивают с 17—19% (по весу) угля и смесь с раствором сахара превращают в густую пасту 139 [c.162]

    Плавка часто осуществляется так, чтобы не выводилось все железо в шлак, а часть его оставалась в файнщтейне. Этим способом в файнштейне удерживается и кобальт, что позволяет позже, в процессе рафинирования никеля, выводить при очистке раствора соединения кобальта и перерабатывать их. Иногда кобальт специально переводят в конверторный шлак, из которого затем его извлекают. [c.288]

    Нерастворимыми остаются сульфиды и селениды металлов, благородные металлы, а также углерод и остатки шлака. Эти вещества в процессе рафинирования никеля и образуют шлам. В шлам, составляющий 3—5% массы анодов, переходит и значительное количество меди, которое зависит от содержания серы в аноде, а также до 1% содержащихся в аноде никеля, кобальта и железа. С другой стороны, высокий катодный потенциал, достигающий при выделении никеля минус 0,65 — минус 0,7 В, приводит к тому, что совместно с никелем на катоде разряжаются пе только Н2, но и почти все примеси. Все это обусловливает необходимость отделения катодного пространства от анодного фильтрующей диафрагмой (см. рис. УПМ2). [c.292]

    Для получения кобальта применяют промежуточный кобальтсодержащий материал других производств, например богатые кобальтом конверторные шлаки, кобальтовый шлам из производства цинка или никеля. Если эти материалы не обладают достаточно хорошей растворимостью в кислом анолите электролизеров, то их предварительноперерабатывают. Так, при применении конверторного шлака его подвергают вначале восстановительной плавке в электрических печах с получением сплава, содержащего 6—7% Со, 60% Ре, 30% Ы и 6% Си. Затем этот сплав анодно растворяют в сернокислых или хлоридных электролитах. В первом случае получают раствор, содержащий 7—8% Со - -, много железа и никеля. Эти растворы после очистки подвергают электроэкстракции. [c.298]

    Однако полностью перевести железо в шлак, не затронув при этом кобальта и никеля, не удается. При окислении остатков железа начинает окисляться и кобальт, а так как его в штейне мало, то вместе с ним окисляется и ошлаковываетоя некоторая часть никеля. Продувку штейна можно вести, либо оставляя большую часть кобальта в файнштейне, либо, наоборот, переводя его в основном в шлак. В обоих случаях как из шлаков последних съемов, так и из файнштейна кобальт приходится извлекать. [c.390]

    В настоящее время при переработке сульфидных руд признано целесообразным собирать большую часть кобальта в файнштейне, так как последующее извлечение кобальта при электролитическом рафинировании никеля идет полнее и экономичнее. В этом случае продувку файнштейна ведут, оставляя в нем 2— 2,5% железа. Часть кобальта, перешедшую в шлак, извлекают из последнего обработкой металлизированным штейном в электрических печах. Кобальт при этом переходит в штейн. В электропечи идут реаиции [c.390]

    При переработке окисленных никелевых руд,, когда никель не подвергается электролитическому рафинированию, перевод кобальта в файнштейн равнозначен его потере. Поатому при переработке таких руд продувку штейна следует производить так, чтобы кобальт почти сполна перевести в шлак. Затем кобальтовые шлаки следует обрабатывать бедным штейном для перевода кобальта в богатый штейн, отливаемый в аноды (см. схему, разработанную группой инженеров ЮУНКа, рис. 179). [c.391]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Карбид вольфрама УС применяют для изготовления сверхтвердых снлавов типа победит. В промьииленност его получают путем высокотемпературного спекания спрессованных порошков вольфрама и сажи. Можно использовать алюмннотермический метод. Отвешивают 50 г оксида вольфрама (VI), 15 г оксида кобальта (II, III), 2,6 г сажи или порошкообразного графита и 25 г алюминия. Количество шихты можно уменьшить, оставив указанные соотношения комнонеитов. Смесь перемешивают и проводят алюминотермическое восстановление (см. ч. I, гл. II). Сплав отделяют от шлака и поме- [c.238]

    Шлаки (томасовские шлаки), образующиеся при переработке фосфатных руд на чугун, содержат 14—16% Р2О5. Они являются хорошим фосфорным удобрением. Его применение обеспечивает повышение урожая картофеля, сахарнш Свеклы и кукурузы на 40%. Для этой же цели в качестве микроудобрений могут быть использованы медьсодержащие огарки, а также отходы, образующиеся при производстве марганца, кобальта, молибдена, железа и других металлов. [c.514]

    Штейном называют в металлургии сплав сульфидов железа и цветных металлов переменного состава (в случае меди это в основном СпаЗ и ГеЗ), полученный простым плавлением или частичным окислением сульфидного медного концентрата. При простой (ликвационной) плавке более тяжелый расплав сульфидов металлов, имеющих большее сродство к сере (медь, никель, кобальт), называемый штейном, отделяется простым отстаиванием от шлака, состоящего из оксидов металлов, имеющих большее сродство к кислороду (кремний, железо, алюминий, кальций, магний). [c.33]

    При продувке хром, вольфрам и молибден в виде оксидов удаляются в шлак. Некоторое количество оксидов вольфрама и молибдена переходит также в возгоны. Никель и частично кобс1Льт сульфидиру-ются и концентрируются в сульфидных расплавах. При дальнейшей продувке значительная доля сульфидного кобальта окисляется и переходит в шлак вместе с железом и другими примесями. [c.131]

    Определение кобалыа в марганцовых рудах и марганцовистых шлаках с помощью этилксантогената [261]. Навеску руды с содержанием 0,03—0,1 мг кобальта разлагают концентрированной соляной кислотой, отфильтровывают нерастворимый остаток (кремнекислота и др.), из фильтрата осаждают в делительной воронке кобальт и другие тяжелые металлы (железо, никель и др.) 1 М раствором ксантогената калия и экстрагируют четыреххлористым углеродом. Раствор ксантогенатов металлов в четыреххлористом углероде промывают 10—20 мл ам.миачного раствора тартрата натрия при этом железо переходит в водный раствор в форме тартратного ком плекса, а никель — в форме аммиаката. Неводный раствор, окрашенный в присутствии кобальта в желто-зеленый цвет, отделяют от водной фазы и измеряют оптическую плотность экстракта при 435 ммк. Возможно также определение методом стандартных серий. [c.181]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Фотоэлектрическое определение фосфора в растворах шлаков ведут с помощью электрода вакуумная чашка [164]. Вследствие изменения пористости графита от электрода к электроду и связанного с этим уменьшения точности анализа используют серебряные электроды с тефлоновой чашкой (канал диаметром 0,7 жж и длиной 18 мм). Противоэлектрод — серебряный стержень диаметром 6 мм, заточенный на конус. Для возбуждения спектра применяют высоковольтную искру (напряжение 30 кв, индуктивность 10 мкгн, емкость 0,005 мкф, сила тока 10 а 12 цугов за полупериод). В качестве внутреннего стандарта используют кобальт (содержание 0,04%). Градуировочные графики строят в координатах отсчет—концентрация элемента. Интервал определяемых концентраций фосфора 0,4—1,0%. Средняя квадратичная ошибка измерений 5 отн.%. [c.119]

    Подготовку проб осуществляют следующим образом. Отобранный в металлическую ложку расплавленный шлак в количестве 300 г выливают на стальную плиту. Затем шлак дробят в щековой дробилке 3—5 сек. до получения кусочков размером не более 4 жж. После квартования 30—40 г шлака истирают до величины зерна 0,074 жж. Для получения большого брикета (ф 32 жж) 1,5 г шлака смешивают с 5 г графитового порошка, 0,3 г окиси кобальта или окиси никеля (внутренний стандарт). Для получения малого брикета навески должны быть следующими 2,5 г графита, 0,15 г окиси никеля или кобальта, 0,75 г шлака. После перемешивания прессуют таблетки под давлением 4 т/см с продолжительностью выдержки 15 сек. Общее время, затрачиваемое по подготовку таблетки, составляет 8—10 мин. Диапазон определяемых содержаний фосфора (РгОо) составляет 0,6-5,0о/ . Средняя квадратичная ошибка определения -3 отн.%. [c.120]


Смотреть страницы где упоминается термин Кобальт в шлаках: [c.223]    [c.40]    [c.491]    [c.401]    [c.132]    [c.375]    [c.415]    [c.279]   
Колориметрический анализ (1951) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Шлаки



© 2025 chem21.info Реклама на сайте