Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток понятие

    Реальная контактная ступень, для которой покидающие ее паровой и жидкий потоки находятся в равновесии, имела бы с этой точки зрения 100%-ную эффективность. Данное условие предполагает идеальное перемешивание жидкости на тарелке, обеспечивающее установление но всей ее поверхности некоторого среднего состава флегмы, равновесной поднимающемуся паровому потоку. Вместе с тем самопроизвольный процесс установления равновесия между контактирующими фазами протекает во времени, а не мгновенно, и поэтому в самом понятии теоретической ступени содержится еще и предположение о том, что обеспечивается время, необходимое для достижения равновесия. Этим идеализированным предельным условиям не отвечает практическая тарелка, работающая в реальной производственной обстановке. Во-первых, она характеризуется известным градиентом состава жидкости по всей своей поверхности и стекающая с нее флегма не имеет [c.207]


    До сих пор метод динамического программирования приводился для последовательного включения элементов процесса. Если число элементов процесса в схеме очень велико, удается рассматривать всю систему как одну аппаратурно-процессную единицу, в которой состояние главного потока изменяется непрерывно в направлении течения. Приведенный пример схемы последовательно соединенных реакторов дает понятие о возможности перехода ряда дискретных реакторов (смешения) в один трубчатый реактор (вытеснения), который уже был описан в гл. И. Теперь возникает вопрос каков оптимальный температурный градиент трубчатого реактора Ответить на него можно непосредственно, не приступая на основе общих рассуждений к динамическому программированию элемента процесса непрерывного действия. [c.349]

    Гидродинамические режимы. С формой функции распределения времени пребывания в реакторе связано понятие о гидродинамическом режиме аппарата. Принято выделять два предельных гидродинамических режима идеального вытеснения и идеального смешения. В режиме идеального вытеснения время пребывания в реакторе одинаково для всех элементов потока соответственно, функция распределения времени пребывания имеет вид б-функции б (т— ). В этом режиме продольное перемешивание потока отсутствует и [c.212]

    На границе двух различных фаз гидродинамическая обстановка обычно очень сложная. Основным понятием в учении о потоках является открытый Прандтлем очень тонкий пограничный слой (расположенный у границы текущей среды), для которого характерен гораздо больший градиент скорости, т. е. более быстрое ее изменение [6]. Независимо от Прандтля Нернст установил подобное же изменение концентрации у границы фаз 17]. Это явление также оказалось общим (как и открытые независимо друг от друга законы для потоков теплоты, массы и импульса). Таким образом, для тонкого слоя вблизи границы фаз характерно резкое изменение концентрации, температуры и скорости. Скорость переноса для любого потока имеет размерность  [c.67]

    Нейтронный поток. Понятие нейтронный поток весьма важно для вычисления радиоактивности, возникающей при облучении в атомном реакторе неактивного вещества. Предположим, что источник нейтронов испускает п нейтронов иа 1 сж , которые движутся в направлении, перпендикулярном к поверхности, со скоростью V см/сек тогда произведение пю, представляющее собой число нейтронов, попадающих па 1 сж в 1 сек, является потоком нейтронов Ф (Исм -сек). [c.45]


    В пределах каждой из фаз при их движении проявляются те силы, которые были рассмотрены при анализе гидродинамических явлений, протекающих в однофазных потоках. Однако наличие двух фаз изменяет не только формы движения таких систем, но и их природу, так как решающее влияние оказывает взаимодействие между фазами. В этих случаях невозможно описать режимы обычными для однофазных потоков понятиями, как ламинарный или турбулентный поток. [c.170]

    В гл. 4 было определено понятие степени свободы, т. е. установлено число независимых переменных системы, которое необходимо для ее однозначного описания. Там же было показано, что при выборе независимых переменных в соответствии с числом степеней свободы Р надо исходить из конкретных уравнений, которые характеризуют условия в системе. Эти уравнения рассматривались в гл. 6, причем одно из них [уравнение (6-49)] — в обобщенных переменных, а уравнения (6-50) — применительно к потокам массы, компонентов, теплоты и импульса. [c.104]

    Во-первых, на базе представления о зернистом слое как принципиально неоднородной системе проведен критический статистический анализ некоторых основных понятий, которыми, иногда не задумываясь, пользуются практики — структура слоя, его порозность и удельная поверхность, средняя локальная скорость потока — и очерчены границы применимости этих понятий. [c.3]

    В гл. I (стр. 16) подробно проанализирован вопрос о границах применимости понятия средней локальной порозности е и представительном объеме V, для которого это понятие может быть введено. Приведенные там ограничения в еще большей степени касаются определения понятия средней локальной скорости потока и. Поэтому на описанные здесь расчетные и экспериментальные методы определения распределения локальных скоростей по сечению следует смотреть как на полуколичествен-ные и не переоценивать их необходимую и допустимую точность. [c.78]

    Чтобы установить эталон для оценки работы тарелок колонны, вводится понятие об идеальной контактной ступени или теоретической тарелке, характеризующейся тем, что в ходе массообмена взаимодействующие потоки достигают равновесного состояния. [c.122]

    При вероятностно-статистическом моделировании получения дисперсных систем во фрикционных потоках и при кавитационно-акустическом воздействии активно используется понятие инфинитезимальных интенсивностей, под которыми в теории случайных процессов понимаются мгновенные локальные параметры данных процессов. При получении дисперсных систем инфинитезимальные интенсивности играют роль кинетических параметров процессов образования дискретных компонентов системы (диспергирование, генерация кавитационных пузырьков) и процессов их уменьшения (агрегирование частиц и разрушение пузырьков). [c.131]

    В литературе получил распространение термин поток вещества как синоним потока массы, но в настоящей книге он не используется. Понятие поток компонента совершенно идентично потоку множества частиц, которым мы также не пользуемся во избежание недоразумений. [c.57]

    Рассмотрим сущность понятия поток. Как было показано выше, поток означает пространственное перемещение какой-либо величины. Некоторое (однозначно характеризуемое обобщенной плотностью Г) множество частиц движется под действием какой-либо силы из одного места пространства в другое. Такой характеризующийся движением в пространстве поток называют конвективным потоком. Под этим следует понимать, что множество частиц с однозначно обобщенной плотностью Г (которое на рис. 6-1 изображено в виде элементарного параллелепипеда объемом dV) передвигается в другое место пространства. [c.61]

    Введем понятие о скорости переходящего потока, отнесенной к единице объема  [c.67]

    В промышленном химическом процессе могут протекать одновременно несколько (и даже несколько десятков) простых химических реакций, связанных дополнительно с гидродинамикой потока, переносом массы и тепла. Поэтому для процесса, проводимого в большом масштабе, введем понятие так называемой технической скорости превращения. В общем случае эта скорость будет функцией не только состава системы и температуры, но также скорости [c.203]

    Теперь, используя рис. 13-10, введем некоторые основные понятия о движущихся в системе потоках. [c.274]

    Понятия производного тензора и дивергенции можно представить наглядно. Рассмотрим в векторном поле v (г) скоростей потока жидкости элемент объема жидкости вокруг точки Рд, заданной локальным вектором Гд + Дг. Скорость находящейся здесь частицы с локальным вектором г - Аг в соответствии с определением производного вектора равна  [c.366]

    Понятие струйка определяется следующим образом. Выделим мысленно некоторую площадку, перпендикулярную потоку, и проследим за всеми частицами жидкости, проходящими через эту площадку. Частицы жидкости образуют элементарную струйку. Каждая струйка ограничена боковой поверхностью. [c.14]

    Многие физические законы формулируются через понятие о скорости соответствующих процессов. Примерами могут служить скорость теплопередачи (закон Фурье), скорость диффузии (закон Фика), скорость потока жидкости или газа, скорость химической реакции. При помощи понятия о производной некоторые из указанных законов выражаются в весьма простой математической форме. На практике приходится сталкиваться с двумя аспектами этого кру а вопросов  [c.384]


    В связи с приведенными выше уравнениями для характеристики работы реактора представляет интерес понятие относительной объемной скорости , которая определяется как объемная скорость потока жидкости или газа, деленная на объем реактора поэтому она имеет размерность время (обратную величину относительной объемной скорости часто называют -относительным временем ). Если под объемной скоростью потока понимать объемную скорость, измеренную при температуре и давлении в реакторе, и если под объемом реактора понимать его свободный объем, то тогда относительная объемная скорость имеет простой физический смысл. Объемная скорость в 10 час например, будет означать, что жидкость или газ внутри реактора (т. е. внутри его свободного пространства) сменяется 10 раз в час. Если же объемная скорость потока определяется для каких-то стандартных значений температуры и давлений, отличных от существующих в реакторе, либо, если при нахождении относительной объемной скорости берется весь объем [c.49]

    При анализе процессов разделения в условиях стационарного потока часто используют понятие эксергии экстракции отдельного компонента или фракции из исходной смеси [1]. [c.234]

    Предельные модельные рабочие режимы именуются полное перемешивание и идеальное вытеснение . Для последнего понятия в отдельных случаях был бы удобен термин стержневой поток (но не поршневой , так как поршневой режим — определенная модификация псевдоожиженного состояния). [c.12]

    Мы не будем вдаваться в детальный анализ физического смысла термодинамических понятий потоков и сил, изучение которых составляет предмет термодинамики необратимых процессов. Отметим лишь, что Рх/ является сложной функцией концентраций компонентов и температуры. [c.17]

    В предыдущей главе было показано, что в условиях полидис-персного потока необходимо иметь данные о средних величинах, характеризующих размеры частиц дисперсной фазы и функции их распределения по размерам. При расчете средней величины диаметра частиц используются понятия о среднем арифметическом диаметре [c.279]

    В последние годы большинство исследователей отказались от предположения о существовании улавливаемого диффузионного потока от залежей УВ к поверхности и ввели понятие о диффузионно-эффузионном потоке, в котором основную роль играет эффузия, а не диффузия. Это, ко- [c.40]

    Для краткого рассмотрения теоретических основ оценки перемешивания в проточных аппаратах путем наблюдения за концентрацией индикатора введем понятие о распределении времени пребывания. Учитывая, что разные элементы поступающего потока могут находиться в аппарате разное время, будем характеризовать их временем пребывания в реакторе т. [c.105]

    Для краткого рассмотрения теоретических основ оценки перемешивания в проточных аппаратах путем наблюдения за концентрацией индикатора введем понятие о распределении времени пребывания. Учитывая, что разные элементы поступающего потока [c.116]

    Размер ячеек в неупорядоченном зернистом слое может быть различным, случаен и способ их соединения между собой следовательно, и скорости потока в разных ячейках будут различными. Усредняя скорость потока на масштабе отдельной ячейки, мы можем ввести понятие средней локальной скорости (или локальной скорости потока), равной отношению характерного размера ячейки к среднему времени пребывания потока в данной ячейке. Локальная скорость потока является случайной величиной, принимающей различные значения в разных областях слоя. Если, однако, зернистый слой статистически однороден, то вероятность обнаружить то ийи иное значение локальной скорости не зависит от пространственного положения ячейки. Помимо того, в статистически однородном слое локальные скорости потока в соседних ячейках являются (с хорошей степенью точности) статистически независимыми. [c.217]

    Больше того, поскольку мольные потоки паров и флегмы по всей высоте колонны бесконечно больше конечного количества сырья, то ввод последнего на каком бы то ни было уровне колонны, в каком бы то ни было фазовом состоянии никак не может отразиться на составах проходящих через это сечение паровых и жидких потоков. Поэтому понятие тарелки питания, столь важное в анализе работы колонны с конечным флегмовым числом, утрачивает смысл и значение при исследовании режима полного орошения для всей колонны в целом. [c.357]

    Понятие наилучшего должно обладать количественной мерой, называемой критерием оптимальности. Любой применяемый критерий оптимальности имеет экономическую природу и определяется, во-первых, изменением состава, а следовательно, и стоимости реагирующего потока в результате процесса и, во-вторых, затратами на ведение процесса. Не все составляющие критерия оптимальности имеют одинаковое значение. Некоторые из них могут быть настолько малы, что их разумно не принимать во внимание, и в каждом конкретном случае надо решать вопрос о том, каким упрощенным вариантом критерия оптимальности надо пользоваться. [c.365]

    Покажем, как можно образовать граничные задачи и как можно найти решения граничных задач. Для дальнейшего изложения введем понятие маршрута /с-го технологического потока. Маршрут /с-го технологического потока определяет некоторый промежуточный выходной поток ТС, полученный в результате процесса теплообмена между этим /с-ым потоком и другими исходными и внутренними потоками системы. Иными словами, маршрут /с-го потока представляет собой часть варианта технологической структуры [c.251]

    В теоретико-информационном подходе к синтезу схем разделения [39—41] используется понятие энтропии, характеризующей неупорядоченность рабочих потоков. Если разделение формально сопоставить с получением информации, то выбор оптимальной схемы равноценен выбору способа, при котором процесс получе- [c.481]

    С. потоков. Понятие, обобщающее круг явлений, связанных с распределением скоростей в ламиаартом и/или турбулентном течении жидкости и газа, с продольным и/или поперечным перемешиванием. [c.419]

    Мембраны, свободно проницаемые только для одного компонента, принято называть полупроницаемыми, а остальные — селективно-проницаемыми, или просто проницаемыми. При разделении газовых смесей обычно имеют дело с селективно-проницаемыми мембранами, поэтому из напорного канала через стенки разделительного элемента проникают все компоненты смеси, но с различной скоростью. Поскольку движущая сила переноса компонента определяется разностью химических потенциалов в напорном и дренажном каналах, скорость проницания каждого компонента меняется по длине мембранного элемента и зависит (как показано ниже) от термодинамических и гидродинамических параметров процесса. Скорость проницания компонентов через мембрану традиционно определяют, используя понятия и феноменологические соотношения фильтрационного процесса. Плотность потока -го компонента через мембра-ну принимают линейно зависящей от перепада давлений над и под мембраной  [c.12]

    При движении двухфазных систем проявляются те силы, которые были рассмотрены при анализе гидродинамических явлений, протекающих в однофазных потоках. Однако наличие двух фаз изменяет не только формы движения таких систем, но и их природу, так как решающее влияние окгшвштвзаимодействие между фазами. Поэтому невозможно описать режимы обычными для однофазных потоков понятиями, такими, как ламинарный или турбулентный поток. Двухфазную систему необходимо рассматривать как физико-химическую систему, которая может быть определена как многофазная многокомпонентная сплошная среда, распределенная в пространстве и переменная во времени, в каждой точке гомогенности которой и на границе раздела фаз происходит перенос вещества, энергии и импульса при наличии источников (стоков) последних. [c.131]

    В то время, как проводились указанные выше работы, к проф. У. К. Льюису и И. Р. Джиллиленду Массачусетского института техполггип обратились с просьбой изучить свойства систем пылевидных частиц в газовом потоке. Понятие кипящего слоя возникло прежде всего в связи с работами этих исследователей. Они нашли в отличие от того, что было тогда известно, что нри движении пыль значительно отстает от восходящего потока газа. Таким образом, если подобрать соответствующие размер частиц и скорость потока, можно создать слой довольно высокой плотности. Движение плотного слоя оказалось сильно турбулентным, создающим превосходные условия контакта газа с частицами. С течки зрения развития процесса это означает, что в объеме умеренных размеров может находиться значительное количество катализатора, достаточнее для достижения необходимой стенени превращения сырья. Более того, потери напора в этом случае невелики. [c.95]

    В несколько ином варианте теории обновления, предложенном Данквертсом [18], механизм диффузии в элементе, находящемся в непосредственйом контакте с газом, предполагается чисто молекуляр 1ым. Кроме того, вводится понятие вероятности смены каждого элемента жидкости новым элементом (принесенным турбулентной пульсацией), или спектра времени пребывания жидких элементов на поверхности. Однако предложенный Данквертсом экспонендиаль-ный вид этого спектра, хотя и основан на разумном представлении о статистической независимости турбулентных вихрей, проникающих непосредственно на поверхность, во-первых, не учитывает того факта, что не все пульсации проникают на поверхность, и, во-вторых, содержит тот же самый неопределенный пара- м етр — период обновления Дт, к которому теперь уже добавляется второй неопределенный параметр, характеризующий спектр времени пребывания. Наиболее отчетливо смысл величины Дт выступает в работе Ханратти [19], в которой сделана попытка описать в рамках теории обновления Опытные данные по массооб-мену между турбулентным потоком и твердой стенкой. Это достигается путем использования Дт в качестве подгоночного параметра. Кроме того, Ханратти без всякого обоснования предлагает следующую обобщенную формулу для спектра времени пребывания Ф(т)йг = Л ехр (—T/At) dT, где т —время контакта, [c.173]

    В /чебном пособии рассмотрены основные понятия и определения, принятые в моделировании химико-технологических процессов на ЭВМ. Приведены методы построения математических моделей. Рассмотрены типовые модели структуры потоков в аппаратах и математические описания некоторых химических, тепло-обменных и массообменных процессов. [c.2]

    Введенное выше понятие координационного числа Л/ суш,е-ственно и само по себе, а не только как вспомогательная функ-ц11я, с помощью которой получено соотношение Гаусса (1.6,6). В непосредственной близости от контакта между шарами образуется капиллярная щель, в которой в первую очередь конденсируются пары и задерживаются стекающие по насадке смачивающие жидкости. Вблизи этих контактов образуются и застойные зоны протекающего потока, замедляющие диффузию и массообмен потока с зернами. С увеличением Nk доля этих застойных зон возрастает. [c.11]

    На рис. 1.3 предложена схема формирования классификационной структуры одного из типов ГА-техники — кавитатора . Его основная функция (мерон) — генерировать поток кавитационных пузырьков. Структурно он обязательно содержит пару ротор-статор с попеременно перекрывающимися прорезями (таксон) с таким их численным соотношением, что некоторое время ротор находится в запертом состоянии (подтаксон). Имя аппарата суть аббревиатура его понятия. И, наконец, в схеме показано, что тематически аппарат принадлежит к классу оборудования химической промышленности. Из схемы видно, что в ее правой части отражена функциональная сторона аппарата, а в левой — структура аппарата и путь обеспечения функций аппарата структурными особенностями. [c.18]

    Расчеты абсорбционно-десорбционных процессов по методу Кремсера — Брауна в силу допущений, принятых при выводе формул абсорбции и десорбции, являются приближенными. ЭВМ позволяет отказаться от этих допущений и решать задачу в точной постановке. Известен метод расчета от тарелки к тарелке . Суть его сводится к тому, что для каждой тарелки решаются свои уравнения материального и теплового баланса и уравнение равновесия. Методом итераций достигают установившегося режима работы колонны. Основной недостаток этого метода — использование понятия теоретической тарелки (использование уравнения равновесия). Точное определение числа теоретических тарелок не имеет большого смысла, поскольку при переходе к реальным тарелкам приходится апеллировать к к. п. д. тарелок, выбор которого в определенных пределах произволен. Точный потарелочиый расчет приобретает смысл при определении мест ввода в колонну нескольких сырьевых потоков и (или) вывода нескольких продуктовых, что встречается при ректификации многокомпонентных смесей. [c.86]

    Чаще всего встречаются следующие векторные поля скоростей,центробежных сил, электрическое, магнитное, силовое я т. д. Понятие векторного ноля можно распространить также и на вектор V, который начинается в конечной точке вектора г (рис. 4). Более ясное представление о векторном поле дают касательные кривые векторов V, так называемые траектории или векторные лпнип. В случае скоростного поля они называются линиями потока, в случав сппового поля — силовыми линиями. Векторные линии векторного поля представляют собой направленную кривую, касательные к которой указывают направление вектора V в точке касания (рис. 5). [c.363]

    Уравнение кинетической кривой связывает составы потоков, пермеата и ретанта, выходящих из одной и той же ступени. Кинетическую кривую в процессах мембранного разделения чаще называют линией равновесия [12—15], оговариваясь при этом, что понятие равновесие ни в коем случае не является термодинамическим, а используется только по аналогии с дистилляцией [12, 16]. Вид уравнения кинетической кривой определяется соотношением скоростей массопереноса компонентов газовой смеси через мембранный аппарат данной ступени, структурой потоков в модуле. Например, при идеальном перемешивании в напорном и дренажном каналах уравнение кинетической кривой имеет вид  [c.204]

    В связи с использованием электрических полей (или других воздействий) для целей интенсификации возникает вопрос об их экономической эффективности, которая во многом зависит от энергетической эффективности. Обычно использутот понятие эффективность поля , подразумевая под ним отношение коэффициентов теплоотдачи с наложением поля и без него ад или, что то же самое, отношение тепловых потоков с полем Qв и без поля Qg, т. е. эффективность поля, %-. [c.159]


Смотреть страницы где упоминается термин Поток понятие: [c.9]    [c.134]    [c.86]    [c.235]    [c.206]    [c.46]   
Явления переноса (1974) -- [ c.24 , c.558 ]




ПОИСК







© 2025 chem21.info Реклама на сайте