Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость углеводородов с длинной

    Вязкость и плотность алкилбензолов возрастает с увеличением числа метильных групп, а индекс вязкости падает. Вязкость углеводородов ряда циклогексана при наличии в молекуле длинных алкильных заместителей, а также 1—2 метильных групп выше, чем у бензольных производных. Однако для триметил- производных закономерность оказывается обратной — вязкость бензольных углеводородов выше, а индекс вязкости ниже, чем у циклогексановых углеводородов. [c.66]


    Изменение вязкости углеводородов в зависимости от длины алкановых цепей в средней молекуле фракций [c.135]

    Количество колец и цепей и длина последних определяют не только абсолютное значение вязкости углеводородов, но и характер температурной зависимости вязкости. [c.135]

    При замене одной длинной боковой цепи в молекуле циклического углеводорода несколькими короткими боковыми цепями, в которых суммарное количество углеродных атомов равно их количеству в длинной цепи, — вязкость углеводорода резко повышается. [c.63]

    При переработке масел важно как можно меньше затронуть нафтеновые углеводороды чем меньше колец нафтенов и длиннее боковые цепи, тем выше индекс вязкости углеводородов. [c.16]

    Получение масел с пологой температурной кривой вязкости зависит от подбора сырья и применяемых методов очистки. Наиболее пологой кривой вязкости обладают парафиновые и нафтеновые углеводороды с длинными парафиновыми цепями. [c.173]

    Кристаллы церезинов имеют игольчатое строение. В их состав наряду с парафиновыми углеводородами входят твердые нафтеновые ароматические углеводороды с длинными боковыми цепями. При одной и той же температуре плавления церезины характеризуются большими по сравнению с парафинами плотностью, вязкостью и молекулярным весом, что видно из приведенных ниже данных  [c.23]

    Для индивидуальных углеводородов однотипного строения с увеличением их молекулярного веса или температуры кипения наблюдается повышение вязкости. У парафиновых углеводородов с сильно разветвленными цепями вязкость выше, чем у соединений с прямой цепочкой. Вязкость нафтеновых углеводородов быстро возрастает с увеличением числа боковых цепей и их длины. [c.47]

    Физические и физико-химические свойства нафтеновых углеводородов близки к свойствам углеводородов парафинового ряда как нормального, так и изостроения, что обусловлено наличием в молекулах нафтенов боковых цепей разных длины, структуры и степени разветвленности. Нафтеновые углеводороды отличаются от парафиновых, выкипающих в тех же пределах, большими плот-нос тью, вязкостью, показателем преломления, меньшей температурой плавления и худшей вязкостно-температурной характеристикой. Нафтеновые и парафиновые углеводороды имеют практически одинаковые значения удельной дисперсии и молекулярной [c.13]


    Таким образом, скорость выделения твердой фазы из раствора на образовавшихся центрах кристаллизации в значительной мере зависит от вязкости среды, средней длины диффузионного пути молекул к центрам кристаллизации, среднего радиуса молекул твердых углеводородов и разности между концентрацией раствора и растворимостью выделившейся твердой фазы при температуре кристаллизации. [c.133]

    Маслорастворимые сульфонаты получают большей частью непосредственным сульфированием минеральных масел, так как эти масла содержат значительное количество ароматических углеводородов, способных к сульфированию. Из различных групп ароматических углеводородов (легких, средних и тяжелых) для получения маслорастворимых сульфонатов с высокими выходами и хорошим качеством желательно использовать легкие углеводороды— моно- и бициклические алкилароматические углеводороды с длинными боковыми цепями ( ie и выше), обладающие высоким индексом вязкости. Поэтому сырье рекомендуется подвергать селективной очистке фурфуролом для удаления нежелательных тяжелых углеводородов (полициклических ароматических углеводородов с короткими боковыми цепями). [c.69]

    О влиянии на индекс вязкости углеводорода числа входящих в его состав колец и длины алифатических цепей можно найти, например, в работах Россини [19] или Микеска [201 и др. [c.14]

    Природа циклического ядра определяет влияние, которое может иметь боковая цеиь определенной длины на индекс вязкости углеводорода. Вязкость повышается с увеличением числа заместителей в циклическом ядре при неизменном суммарном числе атомов углерода во всех заместителях. С усложнением циклического ядра при том же числе атомов углерода в молекуле вязкость повышается. При гидрировании ароматического ядра в соответствующее гидроароматическое повышается вязкость, но мало меняется индекс вязкости. Перемещение циклического ядра ио длине парафиновой цепи незначительно влияет на вязкость и индекс вязкости углеводорода. Положение заместителей в ядре сказывается на вязкости, удельном весе и показателе преломления. [c.175]

    Вязкость и плотность алкилбензолов возрастает с увеличением числа метильных групп, а индекс вязкости падает [130]. Вязкость углеводородов ряда циклогексана при наличии в молекуле длинных алкильных заместителей, а также 1—2 метильных групп выше, чем у бензольных производных. Однако для триметил-производных закономерность оказывается обратной — вязкость бензольных углеводородов выше, а индекс вязкости ниже, чем у циклогексановых углеводородов. Таким образом, полиметилбен-золы по вязкостным свойствам подобны конденсированным аренам. [c.234]

    Хотя полученный материал еще и недостаточен для широких обобщений, можно все-таки сказать, что наличие одной длинной цепи в высшем циклическом углеводороде улучшает технические свойства масел по сравнению с углеводородами, содержащими вместо одной длинной цепи несколько коротких с тем же числом углеродных атомов. Природа ядра (циклопентанового или циклогексанового) имеет меньшее значение для индекса вязкости (температурной кривой вязкости). Разветвленная метановая цепь несколько повышает вязкость углеводорода и понижает его темпе-ратуру плавления. Сравнение тояодественных по структуре угле- [c.96]

    В связи с тем, что парафиновые углеводороды имеют хорошую вязкостно-температурную характеристику, наличие длинных боковых цепей в молекуле циклических углеводородов ведет к повышению индекса вязкости. Чем длиннее цепь и чем больше этих цепей, тем индекс вязкости выше (табл. 11, Л" 5, 6, 7,8). Разветвлегтие боковых цепей уменьшает этот положительный эффект. [c.79]

    Шмидт [67] и Кёльбель и Лютер [54] использовали значение тп, из формулы Вальтера для характеристики зависимости вязкости углеводородов от температуры. На рис. 26 приведена вязкостно-температурная кривая (согласно формуле Вальтера) для -алкилзамещен-ных нафталинов. Этот рисунок может служить примерной иллюстрацией того правила, что величина т уменьшается с увеличением длины цепи однозамещенного ядра [67, [c.127]

    Вляяпе замены одной длинной цепи несколькими мелкими на вязкость углеводородов [c.18]

    Смазочные масла получаются как из асфальтовых, так и из парафиновых нефтей перегонкой в вакууме. Молекулярные веса углеводородов, составляющих смазочные масла, лежат в зависимости от вязкости соответствующих масел в пределах 300—700 следовательно, эти масла содержат углеводороды с 20—50 атомами углерода в молекуле. Их строение не было точно установлено, однако известно, что молекулы содержат два или несколько циклов и алифатическую цепь. Чем длиннее алифатическая цепь, тем меньше изменяется вязкость масла с температурой и, следовательно, качество его лучше (оно обладает большим показателем вязкости ). Углеводороды, входящие в состав смазочных масел, содержат два типа колец циклопарафиноиые и ароматические. Углеводороды с циклопарафиновыми [c.399]


    Нафтены присутствуют в жидкой и твердой (кристаллической) фазах, входя в состав церезинов. Наиболее легко кристаллизуются нафтены с длинной боковой алкильной группой нормального строения. При наличии разветвленной боковой цепи или нескольких боковых цепей меньшей длины вместо одной длинной температура плавления нафтенов значительно понижается. Но в то же время нафтены, молекулы которых в.место одной длинной боковой цепи при циклическом ядре имеют несколько боковых цепей с тем же числом атомов углерода в них, обладают значительно большей вязкостью и худшими вязкостно-температурными свойствами. Аналогичное влияние на вязкостные свойства оказывает наличие и размеры боковых цепей также у других циклических углеводородов — ароматических и нафтеноароматических. [c.140]

    Значения Ь, Н и Р находят [ю специальным таблицам. Чем более по. шга т емперапурная кривая вязкости (меньше коэффициент вязкое — ти , тем выше значение ИВ и более качественно масло (современные ма ла должны иметь ИВ не менее 90). Индекс вязкости, наряду с теппературой застывания,определяет интервал температур, в котором раоотоспособно масло. Всесезонные масла, например, имеют более высокие значения ИВ, чем летние или зимние. Наибольшим ИВ обладают алканы нормального строения. Для циклических углеводородов характерно улучшение вязкостно-температурных свойств с уменьшением цикличности молекул и увеличением длины боковых цепей. Для получения высоко индекс ных масел следует полностью удалять полициклические арены и нафтено-ароматические углеведо — роды с короткими боковыми цепями и смолисто-асфальтеновые ве — щ -ства. [c.131]

    При малой кратности растворителя к сырью вязкость раствора снижается недостаточно, что ведет к образованию дополнительных центров кристаллизации и, следовательно, образованию мелких груднофильтруемых кристаллов. С другой стороны, чрезмерное разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. В результате этого средняя длина диф — фузионного пути кристаллизующихся молекул увеличивается настолько, что даже при медленном охлаждении они не успевают достигнуть поверхности первичных зародышей, что вызывает возникновение большого количества мелкодисперсных кристаллов па — рафинов. Оптимальная величина кратности растворителя зависит от фракционного и химического состава сырья, его вязкости, химической природы растворителя и требований к качеству депарафи — низатов. При этом следует учесть то обстоятельство, что с увеличением кратности растворителя повышаются эксплуатационные. затраты. Очевидно, что с повышением вязкости сырья и глубины депарафинизации требуемая кратность растворителя будет возрастать. [c.258]

    Кроме того, с практической точки зрения данные о количественном содержании различных углеводородных классов имеют весьма большое значение, так как свойства нефтяных продуктов определяются не столько спецификой входящих в них отдельных углеводородов, сколько их групповым составом. Так, например, бензины с высоким содержанием изопара-финовых и ароматических углеводородов обладают высокими антидето-национными свойствами. Моторные масла, богатые нафтенами с длинными боковыми парафиновыми цепями, имеют хорошие вязкостно-температурные свойства или высокий индекс вязкости. [c.24]

    В другом паправлении велись исследования по решению этой задачи ц Англии 129] а именно через реакцию конденсации хлорированного нефтяного парафина с ароматическими углеводородами. Так как парафин пе подвергался крекингу, то можно присоединить более длинные боковые цени, п результате чего получаются масла более высокой вязкости. При пспользовапии в качестве ароматического углеводорода нафталина получаются масла исключительно большой вязкости и с высокой температурой застывания. Если же берут такие ароматические углеводороды, как бензол и толуол, то образуются масла со средними значениями вязкости. [c.512]

    Крекинг-продукты обладают некоторыми преимуществами и недостатками, не связанными с их нестабильностью. Малая вязкость уменьшает величину предварительного нагрева, требующегося для облегчения транспортировки продуктов, до 50— 65° С вместо 150° С для некрекировапных нефтепродуктов той же плотности. В то же время большая плотность позволяет получить большую теплотворную способность на единицу объема. К недостаткам следует отнести более медленное горение ароматических углеводородов, что, кроме более высокой температуры в топке, требует обеспечения длинного пламени и предотвращения внезапного охлаждения пламени до завершения горения [109, 110]. [c.483]

    Нафтеновые углеводороды являются важнейшей составной частью моторных топлив и смазочных масел. Автомобильным бензинам они придают высокие эксплуатационные свойства. Моноцик-ли еские нафтеновые углеводороды с длинными боковыми парафи-но выми цепями являются желательными компонентами реактивных дизельных топлив, а также смазочных масел. Являясь главной составной частью масел, они обеспечивают выполнение одного из основных требований, предъявляемых к смазочным маслам, — малое изменение вязкости с изменением температуры. При одинаковом числе углеродных атомов в молекуле нафтеновые углеводороды характеризуются большей плотностью и меньшей температурой застывания, чем парафиновые углеводороды. [c.25]

    Можно считать установленным, что при одном и том же молекулярном весе гндекс вязкости выше у углеводородов, обладаюп пх более длинными боковыми цепями индекс вязкости увеличивается, если при данном числе боковых цепей длина их увеличивается. [c.283]

    Исследование тех же франций при помощи масс-спектромет-рии показало, что ароматические углеводороды с высоким ИВ (фракция 1) содержат свыше 40% алкилбензолов. Остальные углеводороды (более 50%) являются нафтено-ароматическими, в которых бензольное кольцо сконденсировано с одним или двумя нафтеновыми. С понижением ИВ содержание алкилбензолов уменьшается до 27,9% и возрастает содержание производных бензола с 1—4 нафтеновыми кольцами. Строение парафиновых цепей ароматических углеводородов определяли после гидрирования исследуемых франций определялись ИК-опектры поглощения в области 700—900 см . Результаты исследования П01казали, что высокоиндексные ароматические углеводороды можно отнести к по-лизамещенным производным бензола, содержащим 1—2 длинные и несколько коротких цепей. У углеводородов с низким индексом вязкости (особенно с отрицательным) больше коротких цепей и значительно больше нафтеновых колец. Таким образом, сочетая современные методы разделения и анализа, можно составить достаточно полное представление о химическом составе ароматических углеводородов, входящих в масляные фракции. [c.20]

    Проведя полное гидрирование смол, авторы получили нафтеновые углеводороды высокой вязкости с низким (О—37) индексом вязкости. Это подтверждает полицикличность исследованных смолистых веществ, а также косвенно указывает на присутствие в них ко,ротких боковых парафиновых целей. Нафтены, получаемые при гидрировании высокомолекулярных ароматических углеводородов, выделенных из тех же нефтей, заметно отличаются от полученных при гидрировании смол их индекс вязкости значительно более высок, что, очевидно, связано с меньшей цикличностью исходных ароматических углеводородов к наличием в них более длинных боковых цепей. Исследование инфракрасных спектров у-казанных выше смолистых веществ показало большое сходство между собой этих продуктов все они соде,ржат ароматические кольца (полосы 1600 см ) и группы СНз и СНа (полосы 1380 см , 1460 см ) в насыщенной части всех смол преобладают группы СНа, что подтверждает, по мнению авторов, наличие в смолах нафтеновых циклов. В отличие от ароматических углеводородов для исследованных образцов смол в инфракрасной части спектра обнаружены полосы, характерные для связей С—О (1720 см- ). Полос, ха,рактерных для связей 5—Н, О—Н и N—Н, в спектрах изученных смол не обнаружено. [c.31]

    Остаточное сырье широкого фракционного состава содержит низкомолекулярные компоненты, которые в области температур, близких к критической, более растворимы в пропане, чем высокомолекулярные фракции. Растворяясь в пропане, низкомолеку-ляряые фракции действуют как промежуточный растворитель, повышая благодаря наличию в молекулах длинных парафиновых цепей дисперсионные силы молекул пропана, а следовательно, и его растворяющую способность по отношению к высокомолекулярным углеводородам и смолам. Это приводит к снижению глубины деасфальтизации, ухудшению селективности процесса и, как следствие, к повышению коксуемости и снижению вязкости деасфальтизата при одновременном увеличении его выхода. С углублением отбора дистиллятов при вакуумной перегонке мазута эффективность извлечения смолисто-асфальтеновых веществ из гудрона возрастает. Деасфальтизаты, полученные при переработке [c.70]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Известно, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство твердых углеводородов относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что форма кристаллов и в особенности их размеры в оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, зфтя и относящихся к разным классам, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов оказывает вязкость дисперсионной среды (масла) чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т. е. тем вероятнее возникновение новых центров кри- [c.150]

    Макромолекулы линейного строения представляют собой длинные, зигзагообразные или закрученные в спираль цепи, которым свойственна больщая гибкость. Относительно друг друга линейные макромолекулы могут быть расположены беспорядочно, образуя сложные системы спутанных нитей, как это показано на рнс. 55. Увеличение размеров линейных макромолекул, особенно прн большой полярности образующих их звеньев, усиливает взаимодействие нх между собой, что проявляется в уменьшении летучести, ио-вышенин температуры размягчения, увеличении механической прочности и твсрдостн при низких температурах и вязкости прн высоких температурах, чему способствует также тесное переплетение макромолекул, затрудняющее их внутреннее передвижение. Однако многие линейные полимеры (особенно алифатические ноли-углеводороды) при низкой температуре сохраняют достаточную пластичность. [c.375]


Смотреть страницы где упоминается термин Вязкость углеводородов с длинной: [c.137]    [c.100]    [c.283]    [c.127]    [c.478]    [c.229]    [c.250]    [c.269]    [c.82]    [c.90]    [c.215]   
Теория абсолютных скоростей реакций (1948) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте