Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переэтерификация катализаторы

Рис. 16.7. Влияние природы катализатора на скорость реакции переэтерификации Рис. 16.7. <a href="/info/1137581">Влияние природы катализатора</a> на <a href="/info/2823">скорость реакции</a> переэтерификации

    Обычно для реакции переэтерификации применяют в качестве катализаторов едкую щелочь или алкоголят. Используя избыток высококипящего спирта R OH и непрерывно отгоняя из реакционной смеси низкокипящий спирт R OH, равновесие реакции (10) можно полностью сдвинуть в правую сторону. [c.346]

    Возможны обменные реакции между глицеридами. Жиры пред-етавляют собой смеси триглицеридов, в которых ацильные группы обычно расположены хаотично. Во время реакций переэтерификации (катализатор — оксид щелочного металла, 80—100°С, 30—60 мин) ацильные группы могут перераспределяться. Если в процессе участвуют два различных типа глицеридов (молярное соотнощение 1 1), по окончании реакции продукт имеет полностью отличные от сырья физико-химические, реологические и трибологические свойства (табл. 4.32). В том числе может повыщаться И гидролитическая стабильность (у затрудненных сложных эфиров). Такие процессы могут иметь ряд преимуществ с экономи- [c.243]

    Использование природных жиров в качестве сырья для гидрогенизации нецелесообразно, так как при этом процессе глицерин превращается в менее ценный изопропиловый спирт. Поэтому предварительно проводят двухступенчатую обработку жиров (гидролиз и этернфикация выделенных свободных кислот низшими спиртами) или одностадийную переэтерификацию триглицеридов низкомолекулярным спиртом (как правило, метиловым). Переэтерификацию можно вести в присутствии кислотных (H2SO4) и щелочных (MgO, aO, HjONa) катализаторов. [c.32]

    Скорость кислотно-катализируемой переэтерификации (катализаторами являются сильные минеральные или органические кислоты) намного меньше скорости реакций, протекающих в присутствии щелочи. При щелочном гидролизе константа скорости омыления в одном и том же растворителе для сополимеров этилена и винилацетата различного состава одинакова, т. е. зависит только от типа растворителя [16]. [c.44]

    Необходимо отметить, что число работ по исследованию реакции переэтерификации катализаторами основного типа [c.118]

    Эффективность действия катализатора реакции переэтерификации характеризуется объемом метанола V, отгоняемого в единицу времени (рис. 16.7). Из рисунка следует, что из двух катализаторов (ацетата цинка и ацетата кобальта) более эффективным является первый. При этом, на обоих катализаторах [c.366]

    С. с. используют как компоненты катализаторов полимеризации олефинов, этерификации и переэтерификации, компоненты присадок к смазочным маслам на основе кремнийорг. соед., добавки для новышения октанового числа моторных топлив. Осн. применение находит тетраэтилсвинец. [c.302]


    Было показано, что внутримолекулярная переэтерификация этил-2-гидроксиметилбензоата с образованием фталида катализируется имидазолом и другими основаниями [554]. По-видимому, катализатор способствует отщеплению протона от группы ОН на лимитирующей стадии (общий основной катализ). [c.131]

    Исследована переэтерификация рисового масла непосредственно после рафинации в присутствии серной кислоты в качестве катализатора [233]. При использовании метанола процесс проходит в течение 15 мин с получением практически чистых метиловых эфиров реакция с этанолом менее эффективна. [c.243]

    Реакция происходит при 220—240°С (катализатор РЬО). Продукты переэтерификации растворимы в спирте, тогда как исходное масло, например льняное, в спирте нерастворимо. [c.294]

    Среди синтетических масел, обладающих высокой термической стабильностью и отличными низкотемпературными свойствами, одно из ведущих мест занимают сложноэфирные масла. Синтезировано очень много различных эфиров органических кислот, которые были испы таны в качестве основы синтетических масел, и выявлены наиболее эффективные из них. Все сложноэфирные масла получают по единой технологии взаимодействием спиртов и кислот в присутствии кислотного катализатора при повышенной температуре (100—200 °С) с удалением из зоны реакции образовавшейся воды. Реже применяют реакцию переэтерификации. В качестве катализаторов используют серную кислоту, сульфокислоты, катиониты и др. - [c.156]

    Скорость переэтерификации и поликонденсации повышается в при-> сутствии таких катализаторов, как алкоголяты магния и натрия, окись свинца, борат цинка. [c.351]

    Метиловый эфир щавелевой кислоты может быть получен перегонкой с.меси щавелевой кислоты, метилового спирта и серной кислоты 1 растворением безводной щавелевой кислоты в горячем метаноле этерификацией щавелевой кислоты метиловым спиртом в присутствии безводного хлористого водорода в качестве катализатора переэтерификацией этилового эфира щавелевой кислоты пропусканием паров безводного метилового спирта через водную щавелевую кислоту до удаления воды отгонкой смеси метилового спирта и воды от смеси метилового спирта и водной щавелевой кислоты и пропусканием полученного дестиллата через слой безводного поташа с автоматическим возвращением обезвоженного отгона в реакционную колбу . Описанный здесь метод проще всех вышеперечисленных и дает вполне удовлетворительные выходы, [c.332]

    Как видно из приведенных данных, катализаторами переэтерификации является множество веществ самого разного характера, что убедительно позволяет отнести описываемый процесс к реакциям кислотно-основного типа катализа, в котором имеет место промежуточное кислотно-основное взаимодействие реагирующих веществ с катализатором, т. е. переход протона от катализатора к одному из реагирующих веществ или, наоборот, от реагирующего вещества к катализатору. При последующих стадиях протон перемещается обратно и катализатор восстанавливает свой состав. Случай катализа недиссоциированными молекулами является частным случаем кислотно-основного катализа. [c.44]

    Важное место занимает так называемое промышленное использование ОСМ. Из отработанного рапсового масла или продуктов распада жирных кислот и глицерина можно получать ПАВ, присадки, улучшающие смазочную способность, сырье для производства моюших средств. По методу [311] ОСМ, состояшие из смеси нефтяных и растительных масел, подвергаются термическому обезвоживанию и удалению газойля при последующей переэтерификации под действием одноатомных спиртов и катализатора образуются низкомолекулярные эфиры жирных кислот и глицерин. Нефтяные масла отделяют термическим путем, оставшуюся смесь подвергают обработке в испарителе и в вакуумной ректификационной колонне с разделением эфиров, глицерина, избытка спиртов. [c.332]

    Опыт показал, что многокомпонентные катализаторы примерно в равной степени ускоряют переэтерификацию. [c.44]

    На рис. 3.12 приведены кинетические кривые хода переэтерификации при разных температурах для смешанного катализатора, состоящего из ацетата цинка и окиси свинца [117]. Практически реакция переэтерификации, [c.45]

    Эта реакция до 280 С протекает очень медленно. Небольшое ускоряющее действие оказывают кислотные катализаторы, однако наиболее эффективны вещества основного характера щелочные и щелочноземельные металлы и их окислы, а также гидриды, амиды, окислы других металлов (цинка, свинца, сурьмы) Условия проведения переэтерификации следующие . Вследствие того что переэтерификация является равновесной реакцией, для получения высокомолекулярного поликарбоната с высокими выходами необходимо удалять образующийся фенол из реакционной смеси. Реакцию проводят при 150—300 X в вакууме. Основное количество фенола удаляется до 210 °С и при остаточном давлении 20 мм рт. ст. Затем давление понижают до 0,2 мм рт. ст., а температуру повышают до 280 X. При этом удаляются остатки фенола, а образовавшийся на первой стадии низкомолекулярный поликарбонат с концевыми фенилкарбонатными группами превращается в высокомолекулярный поликарбонат  [c.45]


    Раствор ДМТ, в двухкратном избытке против стехнометричес-кого, подается в автоклав для переэтерификации при 150°С. Переэтернфикация проводится в присутствии катализатора— ацетата цинка, нагрев ведется через рубашку аппарата высо-кокипящим органическим теплоносителем. [c.313]

    Переэтерификация диметилтерефталата этиленгликолем протекает с количественным выходом в присутствии кислотного катализатора—катионообменной смолы [см. [c.346]

    Механизм переэтерификации обычных сложных эфиров сходен с механизмом гидролиза сложных эфиров, катализируемого кислотами и щелочами, как показано в гл. 13 Карбоновые кислоты , разд. А.2. Р-Кетоэфиры не требуют катализаторов для переэтерификации, и обмен спиртовых групп происходит количественно при температуре паровой бани. трет-Ъутиловый спирт, однако, обменивается очень медленно [118]. [c.297]

    Данные, полученные с помощью различных методов исследования, указывают на участие по крайней мере трех аминокислот в построении активного центра рибонуклеазы двух остатков гистидина и одного остатка лизина. Гидролиз РНК (рис. 3.6) проходит в два этапа переэтерификация и последующий гидролиз. Отметим, что при физиологических значениях pH одно из двух имидазольных колец протонировано, а второе —нет. Имидазоль-ные кольца функционируют как общеосновной — общекислотный катализатор, а положительно заряженный остаток лизина, вероятно, стабилизирует пентакоординационный интермедиат. [c.128]

    Полимерные эфиры угольной кислоты получают взаимодействием хлорангидрида угольной кислоты с многоатомными спиртами и дифенолами в присутствии веществ, вступающих в реакцию с выделяющимся хлористым водородом. Поликарбонаты можно получать и другими методами, например переэтерификацией эфиров угольной кислоты диоксисоединениями в присутствии катализаторов (соли, окислы металлов и др.). В зависимости от выбора многоатомного спирта или фенола можно получить полимеры линейной или пространственной структуры. Наибольший интерес представляют термопластичнрле полимеры, синтез которых осуществляется с участием двухатомных фенолов. Высокомолекулярные поликарбонаты, молекулярный вес которых достигает 50 ООО, получают прп действии фосгена на дифенилолпро-пан в присутствии щелочного катализатора при 150—300°  [c.426]

    Для получения эмальлака № 124 (ПЭ-943) (разработан Всесоюзным электротехническим институтом) в реактор вводят глицерин и двухатомные спирты. Смесь нагревают до 160—165° С. Добавляют в нее диметилтерефталат (1 моль диметилтерефталата на 1,3 моля спиртов) и катализатор переэтерификации. После этого начинается переэтерификация с выделением метилового спирта. Продолжается она около 30 ч и сопровождается постепенным ступенчатым подъемом температуры до 210° С. Окончательный процесс поликонденсации низкомолекулярных эфиров осуществляют после добавления в реакционную смесь небольшой части трикрезола при 200—210° С. Полученный поли- [c.224]

    Обмен одной алкоксигруппы в простых эфирах на другую происходит очень редко, хотя эта реакция осуществлена в случае реакционноспособных алкильных групп R, например дифенил-метильной, при использовании в качестве катализатора п-то-луолсульфоновой кислоты [506] или при обработке алкиларило-вых эфиров алкоголят-ионами R0Ar + R 0-- R0R +АгО [507]. В отличие от этого ацетали и ортоэфиры легко вступают в реакцию переэтерификации [508], например [509]  [c.124]

    Переэтерификация достигается при нагревании диметилтерефталата с избытком этиленгликоля в присутствии катализаторов при атмосферном давлении. В процессе переэтерификации отгоняется метпловы11 спирт. [c.707]

    Из аппарата I расплав диметилтерефталата в избытке этиленгликоля (двукратном против стехиометрического) подается при температуре 150° в реактор 2 для переэтерификации. Переэтерпфи-кация проводится при нагревании смеси парами динила через рубашку ахшарата 2 до 200° в присутствии катализатора — ацетата цпнка (могут применяться также алкоголяты магния и натрия, борат цинка, окись лития и т. п. [87, 15]). Материал аппаратуры — нержавеющая сталь. [c.707]

    Переэтерификация представляет собой равновесную реакцию, которую можно сдвинуть в прямом направлении, применяя избыток одного из реагентов или, что предпочтительно, удаляя один из компонентов — R OOR" или R OH. Если температура кипения R OH ниже, чем R"OH, можно проводить разделение, при помощи фракционирования иногда для удаления получающихся продуктов пользуются образованием азеотропных смесей [113]. Катализаторами такой реакции обмена служат кислоты, например серная [114, 115] или п-толуолсульфокислота [113], или основания, например алкоголяты алюминия [ИЗ, 116]. Как правило, превращение лучше протекает с первичными спиртами, причем наиболее реак-ционноспособен метиловый спирт, хотя в некоторых случаях с успехом можно применять вторичные спирты [113, 117]. [c.296]

    Переэтерификация спирта ми, фенолами и меркаптанами, как правило, требует применения кислотного катализатора, в то время как в случае карбоновых кислот, по-видимому, сам реагент обладает достаточной кислотностью, чтобы катализировать реакцию. Очевидно, ЧТО в этих условиях реакции переэтерификации протекают с участием карбониевого катиона по следующему механизму [c.33]

    Затем в реакционную смесь вводят ЗЪгОз - катализатор иереэтерификатщн и продолжают реакцию при тех же условиях. В результате переэтерификации получается полиэтилентерефталат и этиленгликоль, который удаляют отгонкой в вакууме при 280-290 С. [c.2293]

    Переэтерификация —SiOR -t- R OH —SiOR -b ROH (R = Alk, Ar). Катализаторы-К-ТЫ, алкоголяты щелочных металлов, Al, Fe или Ti, амины, амиды и др. Р-цию используют для замещения низших R на высшие, напр, при получении арилароксисиланов. [c.98]

    В пром-сти Б. получают 1) этерификацией акриловой к-ты бутиловым спиртом, взятым в небольшом избытке (кат.-H2SO4, ионообменная смола) примесь спирта отделяют перегонкой с водяным паром или азеотропной ректификацией 2) переэтерификацией метилакрилата бутанолом в присут. катализатора (напр., H2SO4) 3) взаимод. этиленциангидрина с бутиловым спиртом в присут. H2SO4 и HjO по схеме  [c.332]

    Торрака и Туррициани [73] для конкретной реакции переэтерификации диметилтерефталата этиленгликолем также приняли ионный механизм с ускорением катализатором образования ионов гликолята, взаимодействующих с исходным эфиром по механизму щелочного катализа. [c.40]

    Фонтана [82] указал на ошибки предшествующих авторов. Гриль и Шнок учитывали порядок реакции только по отношению к одним эфирным связям, хотя и показали, что скорость переэтерификации пропорциональна концентрации катализатора. Также не было принято во внимание изменение объема в ходе процесса. Пиблес и Вагнер пренебрегли порядком относительно концентрации катализатора. Экспериментальная работа Фонтана показала, что реакция переэтерификации имеет общий третий порядок при первых порядках относительно гидроксильных и метоксигрупп, а также концентрации катализатора. [c.42]

    Реакция переэтерификации практически не идет без катализатора. В патентной литературе в качестве катализаторов предложены почти все металлы периодической системы элементов, их окиси, соли, алкоголяты и более сложные сйединения. Ниже приведен далеко не полный перечень веществ, которые могут быть использованы как катализаторы переэтерификации  [c.43]


Смотреть страницы где упоминается термин Переэтерификация катализаторы: [c.45]    [c.376]    [c.520]    [c.376]    [c.75]    [c.367]    [c.144]    [c.331]    [c.21]    [c.156]    [c.157]    [c.62]    [c.16]    [c.42]    [c.43]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Переэтерификация



© 2025 chem21.info Реклама на сайте